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Abstract. This paper studies the problem of speed regulation control for induction mo-
tors stochastic nonlinear system based on neural networks and backstepping technique.
During the controller design, neural networks are used to approximate the unknown non-
linearities, and backstepping technique is employed to construct controllers. The proposed
controller ensures that all signals of the closed-loop system remain bounded in probability,
and the tracking error converges to an arbitrarily small neighborhood around the origin.
Simulation results demonstrate the effectiveness of the proposed approach.
Keywords: Induction motor, Neural networks, Backstepping, Stochastic nonlinear sys-
tems

1. Introduction. Due to the inherent advantages of induction motors as simplicity of
design, high reliability, low cost and minimum maintenance, they are widely used in in-
dustrial applications. However, the machine parameters and load characteristics are not
perfectly known [1] and they can sensibly vary during motor operation [2]; what is more,
stochastic disturbance frequently exists in engineering applications. Nevertheless, up to
now, few results on adaptive control have been developed for induction motors stochastic
nonlinear systems. Thus, it is more realistic to design controllers based on the induction
motors system where the stochastic nonlinearities are taken into consideration. Many
research results on backstepping technique obtained from deterministic nonlinear systems
[3, 4] have been successfully extended to the stochastic nonlinear systems. However, the
backstepping technique suffers from the problem of “explosion of terms” [5]. Various
schemes have been proposed for solving such a problem. Approximation-based adaptive
neural control schemes have been found to be particularly useful for the control of highly
uncertain, nonlinear, and complex systems [6, 7]; different from the classical adaptive
backstepping control approach, adaptive neural control provides a systematic method-
ology to control and design a class of strict-feedback nonlinear systems with unknown
smooth nonlinear functions, where neural networks are used to approximate the unknown
smooth functions. Thus, the major problems with the traditional backstepping are cured.

In this paper, radial basis function (RBF) neural networks [8] are used to approxi-
mate packaged unknown nonlinearities, and then a novel adaptive neural scheme is de-
veloped via backstepping technique for induction motor stochastic derive systems. The
proposed adaptive controller guarantees that all the signals in the closed-loop system re-
main bounded in probability and the tracking error eventually converges to a small area
around the origin in the sense of mean quartic value. The simulation results illustrate the
effectiveness of the proposed control scheme.

The remainder of the paper is organized as follows. In Section 2, the mathematical
model of IM stochastic drive system is described. Then, the adaptive neural control for
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IM stochastic system is proposed in Section 3. The simulation results are given in Section
4. Finally, some conclusions are presented.

2. Mathematical Model of IM Stochastic Nonlinear System. The dynamic model
of IM system under (d− q) coordinate axis is expressed as follows

dω
dt

= npLm

LrJ
ψdiq − TL

J

diq
dt

= −L2
mRr+L2

rRs
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(1)

where σ = 1 − L2
m

LrLs
. ω, Lm, np, J , TL and ψd denote the rotor position, rotor angular

velocity, mutual inductance, pole pairs, inertia, load torque and rotor flux linkage. id and
iq stand for the d − q axis currents. ud and uq are the d − q axis voltages. Rs and Ls
mean the resistance and inductance of the stator. Rr and Lr denote the resistance and
inductance of the rotor. For simplicity, the following notations are introduced: x1 = ω,

x2 = iq, x3 = ψd, x4 = id, a1 = npLm

Lr
, b1 = −L2

mRr+L2
rRs

σLsL2
r

, b2 = − npLm

σLsLr
, b3 = np, b4 = LmRr

Lr
,

b5 = 1
σLs

, c1 = −Rr

Lr
, and d2 = LmRr

σLsL2
r
. Then, the IM stochastic system can be described in

the following form:
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(
a1

J
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J

)
dt+ ψT1 dw
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(
b1x2 + b2x1x3 − b3x1x4 − b4

x2x4

x3
+ b5uq

)
dt+ ψT2 dw
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dx4 =
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b1x4 + d2x3 + b3x1x2 + b4
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(2)

For stochastic control system dx = f (x) dt+ h (x) dw, where f (.) and h (.) are locally
Lipchitz functions, and f (0) = 0, h (0) = 0. The following concepts are proposed:

Definition 2.1. For any given V (x), define the differential operator L as follows:

LV =
∂V

∂x
f +

1

2
Tr

{
hT
∂2V

∂x2
h

}
Assumption 2.1. The sign of gi which is defined as the coefficient of xi does not change,
so there exists constants bm and bM such that for 1 ≤ i ≤ 4, 0 < bm ≤ gi ≤ bM <∞.

In this paper, RBF neural networks will be used to approximate continuous function,
which are used as the form f (Z) = W TS (Z), within which Z ∈ ΩZ is input vector,

W = [w1, w2, . . . , wl]
T is weight vector, l > 1 is neural networks node number, and

S (Z) = [s1 (Z) , s2 (Z) , . . . , sl (Z)]T means basis function vector with si (Z) being used

as Gaussian function as follows: si (Z) = exp
[
− (Z−µi)

T (Z−µi)

n2
i

]
, i = 1, 2, . . . , l, where

µi = [µi1, µi2, . . . , µiq]
T is the center of the receptive field, and ηi is the width of Gaussian

function. In [9], it has been shown that for f (Z) over a compact set ΩZ with sufficiently
large l, for any ε > 0, there exists an RBF neural network W TS (Z) such as f (Z) =
W TS (Z) + δ (Z), ∀Z ∈ ΩZ , where W is ideal weight vector, and δ (Z) is approximation
error and satisfies |δ (Z)| ≤ ε.

3. Adaptive Neural Control for IM Stochastic Nonlinear Systems via Back-
stepping. In this section, we will present an adaptive neural control for induction motors
stochastic nonlinear systems based on backstepping.
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Step 1: For the reference signal yd1, define the tracking error variable as z1 = x1 − yd1.
From the first differential equation of (2), one has ż1 = ẋ1 − ẏd1. The unknown constant

θ is specified as θ = max
{

1
bm
∥Wi∥2; i = 1, 2, 3, 4

}
. θ̂ is the estimation of θ, and θ̃ = θ− θ̂.

Consider Lyapunov function candidate as V1 = 1
4
z4
1 + 1

2λ
bmθ̃

2. By (2), one has
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where l1 is a designed positive constant and f̄1 (Z1) = −TL

J
− ẏd1 + 3

4
z1 + 3

4
l−2
1 z1 ∥ψ1∥4.

According to the universal approximation property of RBF neural networks, for any given
ε1 > 0, there exists a neural network W T

1 S1 (Z1) such that f̄1 (Z1) = W T
1 S1 (Z1)+ δ1 (Z1),

|δ1 (Z1)| ≤ ε1 with δ1 (Z1) being the approximation error. Furthermore, it follows from
Young’s inequality [10] that
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Define z2 = x2 − α1. Choose the virtual control law α1 = −k1z1 − 1
2r21
z3
1 θ̂S

T
1 S1. Using

Young’s inequality and (4), we can get
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with v1 =
(
k1 − 3

4

)
bm > 0.

Step 2: Now choose the Lyapunov function candidate as V2 = V1 + 1
4
z4
2 . By Equation

(5), one has
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where f̄2 (Z2) = 1
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Similarly, for given ε2 > 0, we can get z3
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control law uq is designed as uq = −k2z2 − 1
2r22
z3
2 θ̂S

T
2 S2. Furthermore, we can obtain
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with v2 =
(
k2 − 3

4
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bm > 0.

Step 3: For the reference signal yd2, define the tracking error variable as z3 = x3 − yd2.

Choose the Lyapunov function as V3 = V2 + 1
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3 . Similarly, we can obtain
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where l3 is a positive designed constant, and f̄3 (Z3) = c1x3 − ẏd2 + 3
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with v3 =
(
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Step 4: At this step, we will construct the control law ud. Choose V4 = V3 + 1
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Then, we have
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where l4 > 0, and f̄4 (Z4) = −∂α3
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with v4 = k4bm > 0. The adaptive law is chosen as

˙̂
θ =

4∑
i=1

λ
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i S
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where k0, λ, ki and ri are positive design parameters for i = 1, 2, 3, 4.

Theorem 3.1. Consider the system (2) and the reference signals yd1 and yd2. Then
under the action of the adaptive neural controllers uq, ud and the adaptive law (12), the
tracking error of the closed-loop controlled system will converge to a small neighborhood
of the origin and all the closed-loop signals are bounded.

Proof: For the stability analysis of the closed-loop system, choose the following sto-
chastic Lyapunov function as V = V4. It follows from (11) and (12) that
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For the term k0bm
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θ̃θ̂, the following inequality is obvious.
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By using (12) and φ2 (Z2), we have
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which implies that the term z3
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Next, let a0 = min {4vi, k0, i = 1, 2, 3, 4}, and b0 = 1
2
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r2
i + 3

4
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i=1
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ε2
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then (15) can be rewritten in the following form

LV ≤ −a0V + b0, t ≥ 0. (16)

Therefore, zi and θ̃i are bounded in probability. αi is also bounded in probability
because ∥Si∥ ≤ s. Consequently, all the signals in the closed-loop system remain bounded

in the sense of probability. Furthermore, (16) and [11] imply that dE[V (t)]
dt

≤ −a0E [V (t)]+
b0.

Thus, to guarantee that the tracking error converges to a small neighborhood around
the origin, we can properly adjust the parameters a0 and b0.

4. Simulation Results. In order to illustrate the effectiveness of the proposed results,
the simulation is run for the induction motor with the parameters: J = 0.0586Kgm2,
Rs = 0.1Ω, Rr = 0.15Ω, Ls = Lr = 0.0699H, Lm = 0.068H, and np = 1. The simulation
is carried out under the initial condition x1 = 0, x2 = 0, x3 = 1 and x4 = 0. The reference
signals are taken as yd1 = 0.5 (sin (t) + sin (0.5t)), and yd2 = 1. And load torque TL is

chosen as TL =

{
0.5, 0 ≤ t ≤ 5,
1.0, t ≥ 5.

The RBF NNs are chosen in the following way. The NNs contain eleven nodes with
centers spaced evenly in the interval [−9, 9] and widths being equal to 2, respectively. The
proposed adaptive neural controllers are used to control the induction motor. In order
to get the proper a0 and b0, the control parameters are chosen as: k1 = 60, k2 = 100,
k3 = 200, k4 = 120, r1 = r2 = 2, r3 = r4 = 4, λ = 1, and k0 = 0.01. Figure 1 shows
the reference signal x1 and yd1 and Figure 2 shows the reference signal x3 and yd2. It can
be observed from Figure 1 and Figure 2 that the system can track the given reference
signal well. Figure 3 and Figure 4 show the trajectories of uq and ud. It can be seen that
the controllers are bounded. From the above simulation results, it is clearly seen that
the proposed controllers can track the reference signal quite well even under parameter
uncertainties and load torque disturbance.

5. Conclusions. Based on backstepping technique, an adaptive NN control method is
developed to control the induction motors stochastic drive system. The designed con-
trollers guarantee the speed tracking error can converge to a small neighborhood of the
origin. The simulation results show that the proposed adaptive neural network speed
controllers can overcome the influences of nonlinearities and make sure that the proposed
approach track the given tracking signal well. In the future work, we will focus on the
practical application of the proposed control algorithm.
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