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Abstract. By considering the propagation speed as unavailable, linear estimators are
proposed for the joint time synchronization and localization problem. The proposed linear
estimators including the least square (LS) and weighting least square (WLS) estimators
represent the parameter estimates as the algebraic solutions which avoid the problem
of local optimum of the numerical calculation. Then we derive the Cramer-Rao lower
bound (CRLB) of the joint estimation problem. The simulations show that the positioning
accuracy of the designed linear estimators can be close to the CRLB performance of the
estimation problem. Compared with the LS estimator, the accuracy performance of the
WLS estimator is better due to the efficient weights.
Keywords: Wireless sensor networks, Time synchronization, Localization, Least square,
Weighting least square

1. Introduction. By consisting of lightweight, low-cost, low-power and multi-functional
sensors, wireless sensor networks (WSNs) has driven a myriad of monitoring, tracking,
and control applications. Often, the data collected by a sensor node must be tied with the
sensor position in order to be meaningful. In WSNs, in general, only a few sensor nodes,
called as anchor nodes in the sequel, know their positions a priori, while the remaining
source nodes with unknown positions are required to be localized [1]. To locate the source
node, the relative distance should be measured or estimated between the anchor nodes and
source nodes. The most important kinds utilize the received signal strength (RSS), angle
of arrival (AOA) [2], and signal propagation time, respectively. Signal propagation time
based algorithms estimate the object location using the time that it takes the signal to
travel from the transmitter to the target and from there to the receivers. They achieve very
accurate estimation of object location if combined with high-precision timing measurement
techniques, such as ultrawideband (UWB) signaling, which allows centimeter and even
submillimeter accuracy. The algorithms based on signal propagation time can be further
classified into time of arrival (TOA) [3] and time difference of arrival (TDOA) [4]. TOA
algorithms employ the information of the absolute signal travel time from the transmitter
to the target and thence to the receivers.

To accurately estimate the source locations, there are a lot of algorithms for the source
location estimation by using TOA-based ranging technique in the past years. Maximum
likelihood (ML) estimator is asymptotically optimal, but the ML estimator is nonconvex
and its performance highly relies on the initial solution provided for the iterative solver. To
overcome the shortcoming of ML estimator, the linear estimator [5] or convex optimization
method is proposed by converting the cost function of ML estimator into linear or convex
problem model.
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In TOA-based model the source locations are estimated by using the propagation time
which is the time difference from the transmitter to receiver. However, each sensor node
has independent crystal and specific clock circuit. Due to the initialization or clock de-
flection, the direct observation time of sensor nodes would be inaccurate without time
synchronization. TOA-based localization method is highly dependent on time synchro-
nization in the asynchronous networks. Recently, joint time synchronization and local-
ization have been considered in the literature. By considering the practical clocks with
internal delays and clock skews, the estimation of source location is proposed in [6] by
a weighted least squares (WLS) estimator when a two-way ranging (TWR) protocol is
employed for asynchronous networks. To alleviate the computational complexity, two
iterative approaches including expectation maximization (EM) and least squares are pro-
posed to estimate the clock parameters and the location of the unknown node [7]. For
jointly estimating clock parameters and the locations of multiple sensor nodes, two com-
putationally efficient algebraic solutions are developed by using the timing measurements
between source nodes and anchor nodes [8]. The performance of linear estimator is not
enough robust especially when the noises are high. In [9], a semidefinite programming
(SDP) algorithm is proposed for cooperative joint sensor synchronization and localization.
Moreover, the complexity of the proposed SDP is especially high for a large number of
variables.

On the other hand, the standard choice for the underwater WSNs communication is
to utilize acoustic waves but the speed of sound is a function of temperature, pressure,
salinity and depth in the oceans, which implies that the signal propagation speed is
also subject to uncertainties. While in underground WSNs and in-solid scenarios where
seismic/vibrational sensor data are processed, the propagation speed is unknown and de-
pends strongly on the propagation medium. In this paper linear estimators are proposed
for the joint time synchronization and localization problem when considering the propa-
gation speed as unavailable. The linear estimators including the LS and WLS estimators
are designed by transforming the nonlinear equations to linear equations and obtain the
closed-form solution to the parameters estimates. This paper contains a number of sym-
bols. Following the convention, we represent the matrices as bold case letters. If we
denote the matrices as (∗), (∗)−1 represents matrix inverse. ∥∗∥ denotes ℓ2 norm.

2. Problem Specification. In a 2-dimensional plane, the positions of M anchor nodes
are known and denoted as xi = [xi yi]

T , i = 1, 2, . . . , N . These anchor nodes are used to
determine the position of a source node, which is denoted as x = [x y]T . To locate the
source nodes, a TOA-based scheme of two-way message exchanges is introduced and shown
as Figure 1. A message is sent from anchor node i at observation time Ti and received by
the source node at observation time Ri which is not accurate due to the imperfect crystal
clock of the source node. According to the clock model in [9], the observation time is
linearized with the real time and can be modeled as{

Ti = ωiti + θi

Ri = ωxt
′
i + θx

(1)

where i = 1, 2, . . . ,M , and ti and t′i are the real time at anchor node i and the source
node, respectively. ωi and ωx are the clock skew of anchor node i and the source node.
θi and θx are the clock offset of anchor node i and the source node. So the propagation
distance di is written as

di = c

(
Ri

ωx

− θx

ωx

+
θi

ωi

− Ti

ωi

)
+ cni (2)

where the clock skew ωi and offset θi of the anchor nodes are considered as known, and
c is propagation speed and assumed to be unknown due to the uncertainty environment.
ni is the additive time measurement noise with zero mean and variance δ2

i . Subsequently,
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Figure 1. Two-way message exchange between anchor node and source node

source node replies anchor node i with another message sent at T̂i and is received by
anchor node i at R̂i. The similar clock observation can be obtained with{

T̂i = ωxt̂i + θx

R̂i = ωit̂
′
i + θi

(3)

So the propagation distance is equal to c
(
t̂′i − t̂i

)
and also given by

di = c

(
R̂i

ωi

− θi

ωi

+
θx

ωx

− T̂i

ωx

)
+ cn̂i (4)

where n̂i is the measurement noise with zero mean and variance δ̂2
i .

Let αx = c
ωx

, βx = cθx

ωx
, τi = θi

ωi
− Ti

ωi
and τ̂i = R̂i

ωi
− θi

ωi
, (2) and (4) are modified as{

di = Riαx − βx + cτi + cni

di = −T̂iαx + βx + cτ̂i + cn̂i
(5)

Apparently the parameters τi and τ̂i are known since the anchor nodes are assumed
to be synchronized and the clock parameters of anchor nodes are assumed to be known.
When the noises are Gaussian, the well known ML estimator of the proposed model is
simply obtained by the following minimization problem

min
x,αx,βx,c

M∑
i=1

 [di − (Riαx − βx + cτi)]
2

δ2
i

+

[
di −

(
−T̂iαx + βx + cτ̂i

)]2
δ̂2
i


s.t. di = ∥x − xi∥ (6)

The optimization problem in (5) is highly nonlinear and nonconvex and solved by the
iterative numerical methods, which requires an initial point. If the initial point is not
sufficiently close to the global minimum, the numerical methods may converge to a local
minimum or a saddle point causing a large estimation error. So a closed-form solution is
introduced to avoid the shortcoming of the ML estimator and ensure the global conver-
gence in the following.

3. Linear Estimator. To obtain a closed-form solution for the proposed model, the
cost function of the ML estimator is firstly formulated as a linear function. When the fist
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expression is added into the second one in (5), we can obtain that

2di =
(
Ri − T̂i

)
αx + c (τi + τ̂i) + c (ni + n̂i) (7)

Since clock skew ωx is very close to one, we can assume that 1
ωx

= 1 + γx (γx is a variable

close to zero). So (7) is rewritten as

2di = λic + ρicγx + c (ni + n̂i) (8)

where λi =
(
Ri − T̂i + τi + τ̂i

)
, ρi = Ri − T̂i. Squaring both sides of (8) and neglecting

the high order terms, we represent (8) as

−8xT
i x + 4xTx − λ2

i c
2 − 2λiρic

2γx = −4xT
i xi + εi (9)

where εi = (λi + ρiγx) c2 (ni + n̂i), i = 1, 2, . . . , M . Let z =
[
x xTx c2 c2γx

]
, (9) can

be rewritten as matrix form

Az = b + ε (10)

where the row vector of A is equal to [−8xT
i 4 − λ2

i − 2λiρi]. The element value of
b and ε are equal to [−4xT

i xi] and [εi], respectively. A ∈ RM×4, b ∈ RM and ε ∈ RM . So
the weighting least square (WLS) solution to (10) is

z =
(
ATΣ−1A

)−1
AT Σ−1b (11)

where Σ = E
(
εT ε
)

which is given by

Σ = diag
{

(λi + ρiγx)
2 c4
(
δ2
i + δ̂2

i

)}
(12)

The estimation error in z is denoted as ∆z, which can be represented as

∆z =
(
ATΣ−1A

)−1
ATΣ−1ε (13)

where ε is the noise vector, so ∆z is unknown. However, it is straightforward to show
that ∆z has zero mean, when the noise ε is Gaussian with zero mean.

According to the definition of z, we obtain the source position estimate x = z(1 : 2),

the propagation speed estimate c =
√

z(4) and the clock estimate ωx which is obtained
with

ωx =
z(4)

z(4) + z(5)
(14)

To further estimate the clock offset θx, the first expression is subtracted from the second
one in (5), then we can obtain that

2θx = Ri + T̂i + (τi − τ̂i) ωx + ωx (ni − n̂i) (15)

By neglecting the noise term, the estimated clock offset θx can be written as

θx =
M∑
i=1

0.5
(
Ri + T̂i + (τi − τ̂i) ωx

)
(16)

4. CRLB Performance. When the propagation speed is unavailable to the estimator,
the clock parameters and the propagation speed are considered as unknown and should
also be estimated along with the source locations. To derive the CRLB of the estimation
problem, a new vector is defined and denoted as ϕ = [x ωx θx c]T ∈ R5. Then the
probability density function of all measurements is written as

p (R; ϕ) =
M∏
i=1

 1

2πδiδ̂i

exp

−

(
di

c
− Ri

ωx
+ θx

ωx
− τi

)2

2δ2
i

−

(
di

c
+ T̂i

ωx
− θx

ωx
− τ̂i

)2

2δ̂2
i


 (17)
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where R denotes the measurement vector. So when the clock parameters, propagation
speed and source locations are unknown, the logarithm of the probability density function
is represented as

ln p (R; ϕ) = k −
(
r (ϕ)T Σ−1r (ϕ) + r̂ (ϕ)T Σ̂−1r̂ (ϕ)

)
(18)

where Σ = diag {δ2
i }, Σ̂ = diag

{
δ̂2
i

}
, r(ϕ) = [r1 r2 . . . rM ], r̂(ϕ) = [r̂1 r̂2 . . .

r̂M ]. {
ri = di

c
− Ri

ωx
+ θx

ωx
− τi

r̂i = di

c
+ T̂i

ωx
− θx

ωx
− τ̂i

(19)

where i = 1, 2, . . . , M . The CRLB of the unknown parameters are the diagonal elements
of the inverse of the Fisher information matrix (FIM). The FIM of the joint estimation
problem is obtained as

F = −∂2 ln p (R; ϕ)

∂ϕT ∂ϕ
(20)

Therefore, (20) can also be represented as

F =

(
∂r(ϕ)

∂ϕ

)T

Σ−1∂r(ϕ)

∂ϕ
+

(
∂r̂(ϕ)

∂ϕ

)T

Σ̂−1∂r̂(ϕ)

∂ϕ
(21)

where ∂r(ϕ)
∂ϕ

=
[
rϕ
i

]
, ∂r̂(ϕ)

∂ϕ
=
[
r̂ϕ
i

]
, rϕ

i =
[
rx
i rθx

i rωx
i rc

i

]
, r̂ϕ

i =
[
r̂x
i r̂θx

i r̂ωx
i r̂c

i

]
,

rx
i = r̂x

i = (x−xi)
T

cdi

rθx
i = 1

ωx
, r̂θx

i = − 1
ωx

rωx
i = Ri−θx

ω2
x

, r̂ωx
i = θx−Ti

ω2
x

rc
i = r̂c

i = − di

c2

(22)

where i = 1, 2, . . . , M . So the CRLB of unknown parameters is calculated by

CRLB ([ϕ]k) =
[
F−1(ϕ)

]
k,k

(23)

where k = 1, 2, . . . , 5.

5. Evaluation. To test the performance of proposed algorithm, the simulations are con-
ducted with MATLAB software. The anchors are deployed in a square area of 100 m × 100
m. The source target is set at the point (50, 50) in a prior. In the region eight anchor nodes
are set at the points (60, 10), (80, 90), (35, 80), (10, 10), (50, 5), (30, 70), (20, 20), (30, 50).
The measurement noises between the source node and each anchor node are subject to
zero mean white Gaussian processes with zero mean and identical variance δ2. In order to
evaluate the performance in different conditions, root mean square error (RMSE) is used
to evaluate the accuracy performance of the estimated parameter. We verify the perfor-
mance of the proposed method through Monte Carlo (MC) simulations and the number
of samples used in the MC procedure is 1000. We firstly give the performance in terms
of RMSE as the noises increase.

5.1. Estimated source location. To test the impact of noises, the clock skew and
propagation speed are set at 1.1 and 3 × 108 m/s in a prior, respectively. When the
noise variance δ2 is varied from 0.12 to 12, Figure 2 plots the performance comparison
with the LS and WLS estimator. It can be seen from Figure 2 that the RMSE of the
estimator source location is approximately linear with the noise. For instance, when the
noise variance δ is set to 0.1, the RMSE of the LS estimator is about 0.022 m. However,
the RMSE of the LS estimator is increased to 0.25 m, when the noise variance δ is set to
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Figure 2. RMSE of estimated source location
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Figure 3. RMSE of estimated propagation speed

1. Due to the fact that the efficient weights are used in the WLS estimator, the RMSE
of the WLS estimator is reduced compared with that of the LS estimator.

5.2. Estimated propagation speed. To test the RMSE performance of LS and WLS
estimators when the propagation speed is unavailable, the noise variance δ is varied from
0.12 to 12. Figure 3 plots the performance comparison of estimated propagation speed
as the noise increases. The order of LS and WLS estimators is the same as Figure 2. It
is seen from Figure 3 that RMSE performance is approximately increased as the noise
increases. When the noise covariance is set to 0.12, the RMSE of estimated propagation
speed is about 2× 10−4 m/s. When the noise covariance is increased to 12, the RMSE of
estimated propagation speed is about 3.5 × 10−3 m/s. Compared with the LS estimator,
the RMSE performance of WLS estimator is closer to the CRLB accuracy performance.

6. Conclusion. In this paper, the joint time synchronization and localization problem
are considered by assuming the propagation speed as unavailable. To derive the source
location and clock parameters, two linear estimators including the LS and WLS estima-
tors are proposed by eliminating the nuisance parameters. The optimization problem
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is converted into a linear least-squares estimation problem, so a closed-form solution to
the joint estimation problem is obtained. The LS and WLS estimators do not require
iteration or initialization compared with the solution to the numerical calculation. It
is demonstrated that the performance of LS and WLS estimators is close to the CRLB
performance of the proposed model. The proposed linear estimators have the advantages
of low computation complexity and high positioning accuracy.
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