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Abstract. In many fields, we often encounter one-class classification problems. The
traditional vector-based one-class classification algorithms represented by one-class SVM
(OCSVM) have limitations when matrix is considered as input data. This work ad-
dresses a nonlinear one-class classifier with matrix-based maximal margin classification
paradigm. To this end, we formulate the Nonlinear One-class SVM Based on Matrix
Patterns (NLMatOCSVM), which can directly use matrix as input. That helps to retain
the data topology more efficiently in comparison with vector-based classifier. The effi-
ciency of the proposed method is illustrated on two matrix-based human faces datasets.
The experimental results indicate the validity of the new method.
Keywords: One-class support vector machine, Matrix pattern, Kernel method, Nonlin-
ear one-class classification problem

1. Introduction. In many practical application fields, we often encounter one-class clas-
sification problems, such as fault diagnosis, face recognition, the network anomaly detec-
tion and text classification. In one-class classification problems, usually, only one class
is available, and the others are either expensive to acquire or difficult to characterize.
One-class support vector machine proposed by Scholkopf et al. [1], is a popular one-class
classifier. OCSVM seeks for a hyperplane in the maximal margin sense, which separates
most of the samples from the origin. At present, there are lots of researches on one-class
classification problems [2, 3, 4], all of which are based on vector space.

In practice, many of the original objects are represented as matrix, such as gray face im-
age. The traditional vector-based one-class classification methods represented by OCSVM
cannot work when matrix is considered. Although there are some methods converting ma-
trix directly into vector, they may lead to structural information loss and data correlation
damage [5]. All these reasons lead us to consider matrix representation and corresponding
learning algorithms for one-class classification problems.

Recently, there are lots of researches on converting vector-based algorithms to corre-
sponding matrix patterns. Yang et al. [6] proposed a two-dimensional principal compo-
nent analysis (2DPCA) which extracted features directly from the matrix. Chen et al.
[7] developed a more general principal component analysis (MatPCA) to extract features
based on matrix pattern. Wang and Chen [8] proposed a matrixized least squares support
vector machine (MatLSSVM) that could directly classify the objects represented by ma-
trix. Further, Wang et al. improved the MatLSSVM into an efficient kernelized classifier
named kernel-based matrixized least square support vector machine (KMatLSSVM) [9].
Chen et al. derived a tensor-based one-class classification algorithm, named one-class
support tensor machine (OCSTM) [10, 11] which took second order tensor (matrix) as
input data. All the experiment results verified that the matrixized classifier had a superior
classification performance to its vector version when it took matrix as input.
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In this paper, we propose a nonlinear one-class classifier which directly takes matrix
as input. We name it Nonlinear One-class SVM Based on Matrix Patterns. This new
classifier helps to retain the data topology more efficiently in comparison with vector-
based classifier. The efficiency of the proposed method is illustrated on two matrix-based
human faces datasets. The experimental results indicate the validity of the new method.

The rest of this paper is organized as follows. In Section 2, we give a brief overview
of related literature. The proposed NLMatOCSVM is described in Section 3 and the
experimental evaluation is presented in Section 4. Finally, we provide some concluding
remarks and suggestions for future work in Section 5.

2. Overview of Related Literature. In this section, we first give a brief overview of
standard OCSVM and the linear matrix-pattern-oriented one-class SVM (MatOCSVM)
proposed by Yan et al. [12]. Then we introduce the kernel matrix invented by [13, 14].

2.1. OCSVM and MatOCSVM. OCSVM aims to learn a single class by determining
a decision function with maximal margin from the origin that contains almost all the
data of this class. Usually, we call the available class the target class, while all other
instances are defined as outliers. Considering training data xi ∈ Rn (i = 1, . . . , l), the
decision function relative to the membership of the sample x to the target class is given
by: f(x) = ((w · Φ (x)) − ρ) ≥ 0, where parameters w and ρ result from the modified
optimization problem:

min
w,ξ,ρ

1

2
∥w∥2 +

1

νl

l∑
i=1

ξi − ρ

s.t. (w · Φ (xi)) ≥ ρ − ξi (1)

ξi ≥ 0, i = 1, . . . , l

Here, the favorable parameter ν can control the fraction of support vectors, and ξi are
slack variables which allow discarding outliers.

On the similar idea of OCSVM, Yan et al. [12] developed a new variant of OCSVM
which directly took matrix as input. The decision function of MatOCSVM is formed as:
f(X) = sgn

(
uTXv − ρ

)
, where X is an n1 × n2 matrix pattern, u is an n1 dimensional

left weight vector and v is an n2 dimensional right weight vector.
The corresponding optimization problem of MatOCSVM is given by:

min
u,v,ρ,ξ

1

2
∥u∥2 +

1

νl

l∑
i=1

ξi − ρ

s.t. uTXiv ≥ ρ − ξi (2)

ξi ≥ 0, i = 1, . . . , l

To solve the quadratic program problem (2), there are two procedures. Firstly, the
right weight vector v is gotten by iteration. Secondly, in each iterative step k, an ana-
lytical solution to the left weight vector u can be gained with the fixed v. The elaborate
description about MatOCSVM can be found in [12].

2.2. The Kernel function for matrix. Since MatOCSVM is a linear classifier oper-
ating on matrix, it cannot handle nonlinear classification problems. [13, 14] proposed a
kernel function for matrix representation data, which used a nonlinear mapping function
Φ(Xi) to map Xi into a high dimensional feature space. The nonlinear mapping function
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for tensor Xi can be defined as:

Φ (Xi) =


φ(zi1)
φ(zi2)

...
φ(zin1)

 , (3)

where zip is the p-th row of Xi. Thus the new kernel function for matrix can be described
as:

K(Xi,Xj) = Φ (Xi) Φ (Xj)
T =

 φ(zi1)φ(zj1)
T . . . φ(zi1)φ(zjn1)

T

...
. . .

...
φ(zin1)φ(zj1)

T . . . φ(zin1)φ(zjn1)
T

 . (4)

Specifically, we use RBF kernel function in this article, since it has been demonstrated
that the RBF kernel usually outperforms the other kernels [15]. The ij-th element of the
kernel matrix is:

φ(zip1)φ(zjp2)
T = e−∥zip1

−zjp2
∥2/2σ2

, (5)

and we call it the RBF kernel function for matrix, shortened as MatRBF kernel in the
following passage.

3. Nonlinear Metricized OCSVM. Our nonlinear metricized OCSVM is fundamen-
tally based on the same idea of MatOCSVM. In this section, we propose a new one-class
classifier NLMatOCSVM based on matrix, which determines a decision function by map-
ping the matrix data into high dimensional feature space, so that the data points in the
target class are separated by maximal margin from the origin.

Suppose we are given a set of training samples {Xi} (i = 1, . . . , l), each of the training
samples Xi ∈ Rn1 ⊗ Rn2 is the data point of matrix, where Rn1 and Rn2 are two vector
spaces.

As similar as MatOCSVM, the decision function of a nonlinear metricized OCSVM can
be represented as follows:

f(X) = sgn
(
uT Φ (X)v − ρ

)
, u ∈ Rn1 , v ∈ Rn2 , (6)

where Φ is a function mapping the data from the original matrix space to a matrix feature
space.

Our NLMatOCSVM can be given by the following optimization problem:

min
u∈Rn1 ,v∈Rn2 ,ρ∈R,ξ∈Rl

1

2
∥u∥2 +

1

νl

l∑
i=1

ξi − ρ

s.t. uT Φ(Xi)v ≥ ρ − ξi (7)

ξi ≥ 0, i = 1, . . . , l

We introduce positive Lagrange multipliers αi, βi ≥ 0, i = 1, . . . , l, one for each of the
inequality constrains. The Lagrangian function for problem (7) is

L (u,v, ρ, ξ, α, β) =
1

2
∥u∥2 +

1

νl

l∑
i=1

ξi − ρ

−
l∑

i=1

αi

(
uT Φ (Xi)v − ρ + ξi

)
−

l∑
i=1

βiξi. (8)

Then we can get the partial derivatives of L with respect to u, v, ρ, ξi,

∂L
∂u

= u −
l∑

i=1

αiΦ(Xi)v, (9)
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∂L
∂v

= −
l∑

i=1

αiΦ(Xi)
Tu, (10)

∂L
∂ρ

=
l∑

i=1

αi − 1, (11)

∂L
∂ξi

=
1

νl
− αi − βi. (12)

From Equations (9) and (10), we see that u and v are dependent on each other, and
cannot be solved independently. Hence, we resort to the iteration method for solving this
optimization problem. The method can be described as follows.

First we fix v. Let µ1 = ∥u∥2 and xi = Φ(Xi)v, and according to (7), we can construct
the optimal quadratic programming problem to solve u:

min
u,ξ,ρ

1

2
∥u∥2 +

1

νl

l∑
i=1

ξi − ρ

s.t. (u · xi) ≥ ρ − ξi (13)

ξi ≥ 0, i = 1, . . . , l

It can be seen that the optimization problem (13) is similar in structure to the standard
OCSVM. To solve (13), we consider its Lagrangian function

L (v, ρ, ξ, α, β) =
1

2
∥u∥2 +

1

νl

l∑
i=1

ξi − ρ −
l∑

i=1

αi

(
uTxi − ρ + ξi

)
−

l∑
i=1

βiξi. (14)

According to Equations (9)-(12),

L (v, ρ, ξ, α, β) = −1

2

l∑
i,j=1

αiαjv
T Φ (Xi) Φ (Xj)

T v

= −1

2

l∑
i,j=1

αiαjv
T K (Xi,Xj)v, (15)

where K(Xi,Xj) is defined by Equation (4).
Thus we can get the dual problem of optimization problem (14):

min
α

1

2

l∑
i,j=1

αiαjv
T K (Xi,Xj)v

s.t. 0 ≤ αi ≤
1

νl
(16)

l∑
i=1

αi = 1, i = 1, . . . , l

Solving (16) determines the lagrangian multipliers αi
∗, then we can get

u =
l∑

i=1

αi
∗Φ (Xi)v.

Then we can update v by gradient descent algorithm. According to Equation (10), we
can obtain the iteration equation of v:

vt+1 = vt − η
∂L
∂v

= vt − η

(
−

l∑
i=1

αiΦ (Xi)
T u

)
, (17)
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where η is the learning rate and t is the iterative counter. According to the solution of u,
we have

vt+1 = vt + η
l∑

i,j=1

αiαjK (Xi,Xj)vt. (18)

Thus, u and v can be obtained by iteratively solving the optimization problems (16)
and (18). The optimal boundary is then determined by the support vector expansion:

f (X) = sgn

(
l∑

i=1

αiv
T K (X,Xi)v − ρ

)
, (19)

where the parameter ρ is calculated by:

ρ = meani

(
l∑

i=1

αiv
T K (Xi,Xi)v

)
. (20)

On the whole, NLMatOCSVM is made up of two procedures. Firstly, the solution of
right weight vector v can be gotten by gradient descent algorithm. Secondly, for every
fixed v, the optimization problem with left weight vector u can be solved by a kernel-based
dual problem which is similar to the standard OCSVM.

4. Experimental Evaluation. In this section, we compare the performance of NLMa-
tOCSVM with that of the standard OCSVM and linear MatOCSVM. After the statements
about the datasets and preparation of experiments, we evaluate the proposed algorithms
on matrix representation datasets.

4.1. Preparation of experiments. In this section, we focus on human face images
datasets. There are two datasets we concern about: the ORL dataset [16] and the YALE
dataset [17]. They are all grayscale images which can be represented as matrix. The ORL
dataset consists of forty people’s face images, everyone has ten different images and each
image is 28× 23 with 256 grayscale levels per pixel. The YALE dataset has fifteen people
and eleven images for each person, and the images in YALE are the size of 100 × 100.
And all the features in these two datasets are scaled to [0, 1]. Since we are interested in
testing the effectiveness of proposed algorithms with matrix representation dataset, we
do not perform cropping or resizing of the images which reduces the number of features
in the data.

In all our simulations, we use RBF kernel k (x,y) = e−∥x−y∥2/2σ2
in the standard

OCSVM, for it has been demonstrated that the RBF kernel usually outperforms other
kernels [15]. For the same reason, we use tensor kernel function K (X,Y) for NLMa-
tOCSVM, which was defined in Section 2.

In one-class classification problems, the training samples all come from the target class,
which means the samples in other class have nothing to contribute to the classifiers.
Hence, we focus on the true positive rate (TPR) of the algorithms in all our simulations.
The AUC, the area under the ROC curve, is always used to measure the performance of
a one-class classifier [18]. In our experiments, we consider both TPR and AUC as the
performance metrics for comparisons.

We use k-fold cross-validation on the training set to find the best parameters, while the
value of k equals to the number of training samples. There are three tuning parameters: ν,
σ and η. The possible choices for parameters are ν ={0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9},
σ = {2−5, 2−4, 2−3, 2−2, 2−1, 20, 21, 22, 23, 24, 25} and η = {10−1, 100, 101}. All the algo-
rithms have been implemented in MATLAB R2011b on Windows 7 running on a PC with
system configuration Intel Core i3 (2.4 GHz) and 6 GB of RAM.
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4.2. Experimental results and analysis. For one class classification problems, we
consider each person’s faces as a target class, so there are 40 target classes in ORL and 15
target classes in YALE. And each target class has only 10 samples in ORL or 11 samples
in YALE.

To verify the effectiveness of the algorithms above, the size of training sets in our
experiments is assigned to 6. For each target class, we randomly choose 6 samples as
training samples, and combine the remaining samples in the target class and all the
outliers to form the testing set. For statistical significance, the results are averaged over
10 random splits from target class and the average performance is reported.

Table 1. Averaged TPR on 40 target classes in ORL dataset

class NLMatOCSVM MatOCSVM OCSVM class NLMatOCSVM MatOCSVM OCSVM
1 0.675 0.25 0.075 21 0.725 0.25 0.1
2 0.675 0.225 0.45 22 0.7 0.275 0.275
3 0.85 0.175 0.05 23 0.75 0.1 0.025
4 0.775 0.4 0.15 24 0.675 0.125 0.25
5 0.675 0.15 0.15 25 0.675 0.525 0.175
6 0.725 0.7 0.2 26 0.85 0.15 0.075
7 0.725 0.125 0.325 27 0.8 0.575 0.6
8 0.725 0.425 0.1 28 0.8 0.075 0.1
9 0.75 0.1 0 29 0.85 0.075 0.075
10 0.7 0.475 0.225 30 0.825 0.125 0.25
11 0.75 0.5 0.325 31 0.8 0 0.075
12 0.825 0.275 0.275 32 0.7 0.25 0.175
13 0.75 0.25 0.25 33 0.825 0 0.25
14 0.85 0.325 0.05 34 0.875 0.025 0.35
15 0.7 0.025 0.05 35 0.825 0.175 0.1
16 0.45 0.2 0.1 36 0.775 0.275 0.05
17 0.875 0.475 0.45 37 0.625 0.15 0.25
18 0.8 0.075 0.2 38 0.825 0.25 0.175
19 0.825 0.575 0.1 39 0.825 0.075 0
20 0.7 0.125 0.175 40 0.8 0.225 0.05

Table 2. Averaged TPR on 15 target classes in YALE dataset

class NLMatOCSVM MatOCSVM OCSVM class NLMatOCSVM MatOCSVM OCSVM
1 0.68 0.36 0.38 9 0.64 0.24 0.36
2 0.72 0.24 0.36 10 0.76 0.14 0.34
3 0.64 0.02 0.4 11 0.86 0.2 0.42
4 0.66 0.04 0.46 12 0.76 0.1 0.5
5 0.76 0 0.56 13 0.52 0.08 0.64
6 0.72 0.08 0.72 14 0.72 0.2 0.46
7 0.8 0.08 0.26 15 0.6 0.14 0.42
8 0.7 0.1 0.12

Obviously, it is an unbalanced classification problem, and it is more meaningful to
concentrate on the true positive rate, the TPR. Table 1 and Table 2 summarize the TPR
of each target class in the two datasets, and the best classification results are shown in
boldfaces. We can see from the tables that the TPR of the NLMatOCSVM is outstanding
in comparison with those of linear MatOCSVM or standard OCSVM.

We also calculate the AUC of the classifiers for evaluating the whole performance on the
two datasets. In ORL dataset, the averaged AUC of 40 experiments of NLMatOCSVM is



ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.7, NO.8, 2016 1663

0.88, which is not far from 0.77 of MatOCSVM and 0.96 of OCSVM. Similarly, in YALE
dataset, the averaged AUC of 15 classes of NLMatOCSVM is 0.64, which is not far from
0.63 of MatOCSVM and 0.78 of OCSVM, either.

Thus, we can conclude that in these two matrix-based datasets, the TPR has been
dramatically promoted by the metricized nonlinear classifier and the AUC among the
classificers has no significant differences. That means the proposed metricized classifier
NLMatOCSVM has greatly promoted the identification of the target samples in compar-
ison with linear MatOCSVM or vector-based OCSVM, without losing the whole classifi-
cation performance in the meanwhile.

5. Conclusion and Future Work. In this work we propose a new metricized nonlinear
one-class classification algorithm. NLMatOCSVM uses matrix as input data, and aims
to separate almost all the samples of target class from the origin with maximal margin.
The benefit of the proposed algorithm is that the use of direct matrix is helpful to retain
the data topology more efficiently. To solve the optimization problem corresponding
to NLMatOCSVM, we use iteration method. In each iterative step, with a fixed right
weight vector, the left weight vector can be estimated by solving a standard OCSVM
optimization problem. And the right weight vector can be updated by the gradient
descent algorithm. We validate our proposed algorithm on two matrix-based human faces
datasets. As expected, the proposed algorithm yields better generalization performance.

However, there are some drawbacks of the proposed method. Since the iteration of
solving parameters costs lots of time, the training time of NLMatOCSVM is much more
than that of vector-based OCSVM. A possible direction on the work is to investigate more
efficient computational methods to solve the optimization problems of NLMatOCSVM.
Another interesting topic is to apply the NLMatOCSVM to real world classification, for
the data point is originally expressed in matrix representation in many application areas.

Acknowledgment. The work is supported by the “New Start” Academic Research
Projects of Beijing Union University (Zk10201513). The authors also gratefully acknowl-
edge the helpful comments and suggestions of the reviewers, which have improved the
presentation.

REFERENCES

[1] B. Scholkopf, J. C. Platt, J. S. Taylor, A. J. Smola and R. C. Williamson, Estimating the support
of a high-dimensional distribution, Technical Report, Microsoft Research, MSR-TR-99-87, 1999.

[2] W. Zhu and P. Zhong, A new one-class SVM based on hidden information, Knowledge-Based Systems,
vol.60, pp.35-43, 2014.

[3] Z. Zhao, P. Zhong and Y. Zhao, Reduced least Squares one-class SVM in empirical feature space for
imbalanced data, ICIC Express Letters, vol.5, no.11, pp.4115-4121, 2011.

[4] Y. Chen, X. Zhou and T. S. Huang, One-class SVM for learning in image retrieval, Proc. of IEEE
Int’l Conf. on Image Processing, Thessaloniki, Greece, 2001.

[5] D. Tao, X. Li, X. Wu and S. J. Maybank, Supervised tensor learning, Knowledge and Information
Systems, vol.13, no.1, pp.1-42, 2007.

[6] J. Yang, D. Zhang and A. Frangi, Two-dimension PCA: A new approach to appearance-based face
representation and recognition, IEEE Trans. Pattern Anal. Mach. Intell., vol.26, no.1, pp.131-137,
2004.

[7] S. Chen, Y. Zhu, D. Zhang and J. Yang, Feature extraction approaches based on matrix pattern:
MatPCA and MatFLDA, Pattern Recognition Letters, vol.26, no.8, pp.1157-1167, 2005.

[8] Z. Wang and S. Chen, New least squares support vector machines based on matrix pattern, Neural
Processing Letters, vol.26, pp.41-56, 2008.

[9] Z. Wang, X. He, D. Gao and X. Xue, An efficient kernel-based matrixized least squares support
vector machine, Neural Comput. and Applic., vol.22, pp.143-150, 2013.

[10] Y. Chen and P. Zhong, Linear one-class support tensor machine, International Journal of Signal
Processing, Image Processing and Pattern Recognition, vol.9, no.9, 2016.



1664 Y. CHEN, Y. ZHANG AND L. LING

[11] Y. Chen, K. Wang and P. Zhong, One-class support tensor machine, Knowledge-Based Systems,
vol.96, pp.14-28, 2016.

[12] Y. Yan, Q. Wang, G. Ni, Z. Pan and R. Kong, One-class support vector machines based on ma-
trix patterns, Proc. of the International Conference on Informatics, Cybernetics, and Computer
Engineering, Melbourne, Australia, pp.223-231, 2011.

[13] C. Gao and X. Wu, Kernel support tensor regression, Procedia Engineering, vol.29, pp.3986-3990,
2012.

[14] P. Daniusis and P. Vaitkus, Kernel regression on matrix patterns, Lithuanian Mathematical Journal,
Spec. Edition, vol.48-49, pp.191-195, 2008.

[15] S. Msji, A. Berg and J. Malik, Efficient classification for additive kernel SVMs, IEEE Trans. Pattern
Anal. Mach. Intell., vol.1, no.35, pp.66-77, 2013.

[16] AT&T Labs Cambridge, The Olivetti and Oracle Research Laboratory Database of Faces, http://
www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html, 1994.

[17] http://cvc.yale.edu/projects/yalefaces/yalefaces.html.
[18] A. Airola, T. Pahikkala, W. Waegeman, B. D. Baets and T. Salakoski, An experimental comparison

of cross-validation techniques for estimating the area under the ROC curve, Comput. Stat. Data
Anal., vol.55, no.4, pp.1828-1844, 2011.


