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Abstract. When decision maker wants to improve the reliability of the system, they
will face the cost and volume of increase, etc. So how to find the optimal combination
scheme with limited resources becomes a big problem. The paper uses indifference curve
analysis, symmetry and Kuhn-Tucker condition and non-linear goal programming to find
the best solution under multi constraints, and try to classify the running phase of the
system, in order to observe better for the marginal economic benefits brought by each
stage.
Keywords: Reliability, Parallel system, Exponential distribution, Double constraints

1. Introduction.

1.1. Reliability introduction. Reliability theory was a newly emerging interdiscipli-
nary subject in 1960s and analyzes the probability of random events which characterize
the specified function of product. It is established on the basis of probability theory,
which is an area of study focused on machine maintenance [1]. With the development of
reliability theory, it gradually needs much frontier knowledge and tools in mathematics,
while reliability mathematics has laid a good foundation for it. In practical reliability
problems, the mathematics used can be divided into two categories: probability model
and statistical model. Probability model infers the reliability indices of system on the
basis of system structure and life distribution of components; while statistical model
evaluates and tests the life of components or system on the basis of observed data. In the
paper, statistical model is applied. Currently, the main researches focus on the reliability
indices of system and optimal detecting time which is determined by reliability indices to
avoid the occurrence of faults and reduce the losses caused by faults, such as [2-4]. For
the parallel system with n element which obeys exponential distribution, Xie et al. have
made some analyses of reliability about extreme value [5]. When the economic constraint
condition is not considered, we get that when the failure rates of all components are equal,
the system reliability can reach the minimum value, also under the performance and costs
constraints, the result is same as only performance constraints, but it has least costs to
support its feasible solution space in order to avoid becoming empty set. Therefore, in
practice, it is better to choose a relatively poor one from a good parallel product than
select products with the same quality, because the reliability of the former is better than
that of the latter. In the process of running, according to the actual situation of system,
if the curve of failure rate is above the envelope curve, then all the components of the
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system have to be replaced; if the curve of failure rate is still relatively distant from the
envelope curve, then the components with the highest failure rate need to be replaced
according to the economy principle. However, in that paper, we only consider the lower
envelope and the unite flexibility of failure rate. Scholars research rarely on the double
constraints like under performance and economic condition in the domestic and abroad;
research which has done basically is qualitative analysis or uses numerical analysis to find
the approximation value of solution in actual system [6-8]. Ida et al. proposed a genetic
algorithm for solving reliability problems which belongs to intelligent algorithm [9-12]. So
all their researches were focusing on engineering method, but this paper uses operational
research and economic optimization method to find the optimal solution which is exact
solution. Lastly, we use matrix to describe multi constraints of the system. The paper
uses indifference curve analysis, symmetry and Kuhn-Tucker condition and non-linear
goal programming to find the maximum value distribution [13,14], so that we can choose
the best solution in design period, and when we should think about to update system.

1.2. The definition of the main indicators of reliability.
(1) Reliability
The definition of reliability R(t): it is the probability that product completes the re-

quired function under the specified conditions and within the prescribed time.
If the life distribution of product is F (t), t > 0, the reliability

R(t) = P (T ≥ t) = 1 − F (t) (1)

This is a function of time (t), so it can be called as reliability function. To the compo-
nents obeying exponential distribution λ, its reliability is e−λt, t ≥ 0.

(2) Failure rate
Failure rate λ(t): it is the probability of occurring failure in the unit of time after

product has worked a period of time (t). According to reliability theory,

λ(t) =
f(t)

1 − F (t)
(2)

When t > 0, the failure rate of exponential distribution is constant λ.
(3) System parameter specification
A: represents normal working events of system.
Ai: represents normal working events of the element i.
λi: represents failure rate of the element i.
Rs(t): represents system reliability, that is, P (A) = Rs.
Ri(t): represents reliability of the element i, that is, P (Ai) = Ri.
Parallel system: it is a system consisting of n components. As long as one of these

elements works, the system can work; only when all the units fail, the system would fail.
According to the property of probability, the normal working probability of system

P (A) = P

(
n∪

i=1

Ai

)
is as follows:

Rs(t) = 1 −
n∏

i=1

(1 − Ri(t)) = 1 −
n∏

i=1

(
1 − e−λit

)
(3)

2. Model Analysis.

2.1. Maximum reliability analysis under two constraints. When t = 1, it can be
transformed to the following model to obtain the maximum value of the original model
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min R =
n∏

i=1

(1−e−λi)

s.t.


n∑

i=1

λi ≤ c

n∑
i=1

f(λi) ≤ u

λi > 0

(4)

and model is equivalent to

min R∗ =
n∑

i=1

In
(
1 − e−λi

)

s.t.



n∑
i=1

λi ≤ c

n∑
i=1

f(λi) ≤ u

λi > 0

(5)

Set

g1 (λ1, λ2, · · · , λn) = −
n∑

i=1

λi + c

g2 (λ1, λ2, · · · , λn) = −
n∑

i=1

f(λi) + u
(6)

The constraints of the original model become:

g1 (λ1, λ2, · · · , λn) = −
n∑

i=1

λi + c ≥ 0

g2 (λ1, λ2, · · · , λn) = −
n∑

i=1

f(λi) + u ≥ 0
(7)

According to well-known Kuhn-Tucker conditions, optimal value must satisfy the following
conditions:

∇R∗ (λ∗
1, λ

∗
2, · · · , λ∗

n) − κ∇g1 (λ∗
1, λ

∗
2, · · · , λ∗

n) − γ∇g2 (λ∗
1, λ

∗
2, · · · , λ∗

n) = 0

κg1 (λ∗
1, λ

∗
2, · · · , λ∗

n) = 0

γg2 (λ∗
1, λ

∗
2, · · · , λ∗

n) = 0

λ∗
i > 0, κ > 0, γ > 0

Expanding the equation we obtain the following:

(
1

eλ∗
1−1

, 1

eλ∗
2−1

, · · · , 1
eλ∗

n−1

)
+ κ(1, 1, · · · , 1) − γ (f ′ (λ∗

1) , f ′ (λ∗
2) , · · · , f ′ (λ∗

n)) = 0

κ

(
−

n∑
i=1

λ∗
i + c

)
= 0

γ (−f ′ (λ∗
i ) + u) = 0

λ∗
i > 0, κ > 0, γ > 0

(8)

The equation can be divided into the following circumstances:
i) κ = 0, γ = 0, original equation has no solution.
ii) κ ̸= 0, γ = 0, original equation has no solution.
iii) κ = 0, γ ̸= 0, get the results as follows:

1

f ′(λ∗
1)∗

(
eλ∗

1−1
) = 1

f ′(λ∗
2)
(
eλ∗

2−1
) = · · · = 1

f ′(λ∗
n)∗(eλ∗

n−1)
= γ

−
n∑

i=1

f (λ∗
i ) + u = 0

λ∗
i > 0, γ > 0

(9)
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iv) κ ̸= 0, γ ̸= 0, get the results as follows:

1(
eλ∗

i −1
) + κ − γf ′ (λ∗

i ) = 0

−
n∑

i=1

λ∗
i + c = 0

−
n∑

i=1

f (λ∗
i ) + u = 0

λ∗
i > 0, κ > 0, γ > 0, i = 1, 2, · · · , n

(10)

when t ̸= 1, set et = a, due to t > 0, a > 0. The results can be replaced by substituting
e to a. For the i-th element, the amount of decreasing failure rate aroused by increas-
ing one unit of cost is 1

f ′(λi)
, as well as the amount of increasing reliability aroused by

decreasing one unit of failure rate is 1
eλi−1

, it can be seen from Formula (9), if optimum
point is not on the boundary constraint of performance, to reach the maximum relia-
bility, all the reliability increasing amounts arising from element of unit costs should be
equal, and the conclusion is similar with consumer equilibrium in microeconomics. The
paper calls it costs-failure rate equilibrium, and the ratio is called the marginal reliability
of unit cost. On the other hand, when optimum point on the boundary constraint of
performance, we cannot just consider the element reliability increases by adding a unit
cost, but also consider the element performance reducing by adding a unit cost, while
other parts must complement the reducing performance which was reduced by the ele-
ment, it can be seen from Formula (10), to reach maximum reliability, marginal reliability
is corrected as γf (λ∗

i ) − κ, and the modified equilibrium is called boundary-costs-failure
rate equilibrium.

Since λ∗ =
(

n
u
, n

u
, · · · , n

u

)
satisfies Formula (9), it is one of K-T points, and we get a

lower bound of the optimal solution as follows:

Rinf = 1 −
(
1 − e−

u
n

t
)n

(11)

However, whether the K-T point is optimal solutions, now we use indifference curve to
analyze and divide g2(λ) into three cases depending on the marginal rate of substitution.

Take n = 2 for example, as shown in Figure 1, when d2λ2

dλ2
1 g2

> d2λ2

dλ2
1 Rs

, the system has two

best solutions, and the solutions are symmetry on the basis of y = x, especially the best
solution is boundary of feasible solution space, corresponding to K-T points of Formula (8),
when having n variable, according to symmetry the best solution is λ∗ =

(
n
u
, n

u
, · · · , n

u

)
,

and maximum reliability is Formula (11), the whole economic constraints curve boundary
is best solution, this is seldom case in reality. It is easy to popularize n > 2 because of
symmetry.

When d2λ2

dλ2
1 g2

< d2λ2

dλ2
1 Rs

, the system has only one best solution, corresponding to K-

T points of Formula (10) as shown in Figure 2. However, anyway in reality Rinf =
1 −

(
1 − e−

u
n

t
)n

is an acceptable solution.
So the system of upper and lower envelope is as shown in Figure 3.
Because system reliability is always in shadow during the process of running, upper en-

velope is maximum reliability curve, and lower envelope is minimum, and the middle line is
the lower bound of maximum envelope got by Formula (11). In this paper, the system is
divided into four periods, as shown in Figure 3. In breaking-in period, the difference be-
tween maximum and minimum reliability is not significant, but after running for a period
of time, reliability difference comes out in parallel system, as part of running, the slowing
down speed of system reliability gradually shows the advantage with minimum reliability,
and keeps quite a long period of time also including the recession; after entering the period
of scrap, the envelopes are gradually approaching; no matter what kind of scheme selec-
tion, all elements should be replaced and upgraded again. In running process, if the failure
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Figure 1. The first case of maximum indifference analysis

Figure 2. The second case of maximum indifference analysis

rate is between Rinf and c, it can be called ideal region, and the failure rate probability
will become very small when running on the ideal area; it is the most stable state.

2.2. Reliability analysis under multi constraints. Now we consider the system not
only contains two constraints like performance, economic, weight and capacity constraints.
Assuming that the system has m index, it can be described by the vector:

f1

f2

· · ·
fm


Every index is function of λ1, λ2, · · · , λn; in addition, introduce positive and negative de-

viation variables, denoted as d+, d−; positive deviation variables represent the decision
value which exceeds the target value of the part and negative deviation variables repre-
sent the decision value does not reach the target value of the part. Because the decision
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Figure 3. Upper and lower envelope

value could not exceed the target value and also not reach the target value, that is the
constant d+ × d− = 0.

When decision makers require to achieve these goals, they have primary and secondary
order of priority, the first goal requirement given priority factor P1, a secondary goal given
priority factor P2, . . ., and sets Pk >> Pk+1, k = 1, 2, . . . , K. It indicates Pk has a bigger
priority than Pk+1. That first of all, it ensures the achievement of objectives P1, then we
can not consider the secondary target P2, . . . , P2 is based on the achievement P1, and so
on.

Now we consider the objective function in the target planning, when every goal deter-
mined, decision makers must limit the deviation from the target, therefore the objective
function of goal programming is min z = g(d+, d−). There are three kinds of basic forms:

(1) Just reach the target value requirements, that is, positive and negative devia-
tion variables should be as small as possible:

min z = g(d+ + d−)

(2) Not exceeding the target value requirements, that is allowing not reach the target
value, positive deviation variables should be as small as possible:

min z = g(d+)

(3) Exceeding the target value requirements, it means that exceeding the amount is not
restricted, but negative deviation variables should be as small as possible:

min z = g(d−)

So the model can be described as:

min z =
L∑

l=1

Pl

K∑
k=1

(
w−

lkd
−
k + w+

lkd
+
k

)
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s.t.


fi (λ1, λ2, · · · , λn) + d−

i − d+
i = bi, i = 1, 2, · · · ,m

λi > 0, i = 1, 2, · · · ,m
d−

i , d+
i ≥ 0, i = 1, 2, · · · ,m

K + L = m

(12)

In the formula, w−
lk, w+

lk represent coefficients of the same level. For hardware system, the
focus is on system reliability, so if f1 represents reliability goal, the priority factor is P1, the
goal only contains d−

1 , and the economic and performance constraints are hard conditions.
For other goals we consider it is the same level. Then the model is simplified as:

min z = P1d
−
1 + P2

(
m∑

k=3

(
d−

k + d+
k

))

s.t.



fi (λ1, λ2, · · · , λn) + d−
i − d+

i = bi, i = 1, 4, · · · ,m
n∑

i=1

λi ≤ c

n∑
i=1

f(λi) ≤ u

λi > 0, i = 1, 4, · · · ,m
d−

i , d+
i ≥ 0, i = 1, 4, · · · ,m

(13)

So analyzing like when d2λ2

dλ2
1 g2

< d2λ2

dλ2
1 Rs

, the system has only one best solution, cor-

responding to K-T points of Formula (9); according to symmetry the best solution is

λ∗ =
(

n
u
, n

u
, · · · , n

u

)
, and maximum reliability is Formula (10). Lastly, when d2λ2

dλ2
1 g2

> d2λ2

dλ2
1 Rs

the whole economic constraints curve boundary is best solution. Especially we consider
the second situation, it can transform into the following optimal on the boundary model:

min z =
m∑

k=3

(
d−

k + d+
k

)

s.t.



fi (λ1, λ2, · · · , λn) + d−
i − d+

i = bi, i = 4, · · · ,m
1

(eλi−1)
+ κ − γf ′(λi) = 0

−
n∑

i=1

λi + c = 0

−
n∑

i=1

f(λi) + u = 0

λ∗
i > 0, κ > 0, γ > 0, i = 1, 2, · · · , n

(14)

Then the following analysis like front, we can use Kuhn-Tucker condition for further
analysis.

3. Conclusion. The paper uses indifference curve analysis, symmetry and Kuhn-Tucker
condition to analyze reliability of the parallel system with n element, which obeyed ex-
ponential distribution under the double constraints, no matter what kind of failure rate
flexibility. When the failure rates of all components are equal, the system reliability can
reach the minimum value, that is have least expense to provide feasible solution and the
solution is the worst scheme. In addition, the paper proposes how to reach the maxi-
mum reliability under various circumstances, we use K-T condition to give the results,
if optimum point is not on the boundary constraint of performance, to reach the maxi-
mum reliability, all the reliability increasing amounts arising from element of unit costs
should be equal, and we call it costs-failure rate equilibrium. When optimum point on the
boundary constraint of performance, to reach maximum reliability, marginal reliability is
corrected as γf(λ∗

i )−κ, the modified equilibrium is called boundary-costs-failure rate equi-
librium, and we use indifference analysis to get the best solution which is corresponding
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to the two equilibriums. By contrast, the system is divided into four periods: breaking-in
period, stable period, recession period and scrap period. In breaking-in period, the dif-
ference between maximum and minimum reliability is not significant, but after running
for a period of time, reliability difference comes out in parallel system, the slowing down
speed of system reliability gradually shows the advantage with minimum reliability, and
keeps quite a long period of time also including the recession; after entering the period of
scrap, the envelopes are gradually approaching, and no matter what kind of scheme se-
lection, all elements should be replaced and upgraded again. In running process, if the
failure rate is between Rinf and Rmax, it can be called ideal region, and the failure rate
probability will become very small when running on the ideal area, it is the most stable
state, lastly we use non-linear goal programming to transform the multi constraints into
simple model, and the conclusion as same as double constraints.
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