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Abstract. Blind image deblurring is a longstanding challenge in image processing and
computer vision. In this paper, we propose a new blind image deblurring approach using
hyper-Laplacian prior. Firstly, maximum a posterior (MAP) based method is applied to
generating the model of estimating blur kernel. Then, we use an alternating minimization
scheme to solve the kernel estimation model. Furthermore, the generalization of soft-
thresholding (GST) operator is adopted in order to deal with the non-convex problem
caused by hyper-Laplacian prior. Finally, when the blur kernel has been estimated, a
non-blind deblurring method is chosen to recover the latent image. Experimental results
demonstrate that the images restored by the proposed method are superior to the state-
of-the-art blind deblurring algorithms in quality.
Keywords: Blind image deblurring, Hyper-Laplacian, Maximum a posterior (MAP),
Generalization of soft-thresholding (GST)

1. Introduction. Blurry images are often caused by some reasons, for example the rela-
tive motion between the camera and the scene [1], out of focus [2] and low light conditions
[3]. The blur sometimes can be used for artistic purpose, such as emphasizing the dynamic
nature of a scene. However, it often acts as an undesired effect that we want to reduce
or even to remove, for example, in many photos taken by handheld camera, traffic mon-
itoring, medical film observation, and many scientific fields. So there is a great practical
significance in dealing with the blurry image. In our work, we mainly focus on blind image
deblurring. The process of image degradation is usually modeled as y = x ∗ k + n, where
y is the blurred image, x is the latent image, k is the blur kernel, which is also known as
the point spread function (PSF), ∗ is the convolution operator and n often denotes the
additive white Gaussian noise. The target of blind deblurring is to obtain x and k with
the given y, a well-known ill-posed inverse problem. As the process of dealing with the
degraded model above is a deconvolution operation, sometimes image deblurring is also
called image deconvolution.

Image deblurring has recently received a lot of attention. According to the fact that
whether the blur kernel is known or not, it is often divided into two categories: non-blind
and blind deblurring. In non-blind deblurring, the blur kernel is assumed already known
or computed in some way. So the task is only to recover the latent image. Krishnan and
Fergus [4] proposed a fast non-blind image deconvolution method using hyper-Laplacian
prior

(
p(x) ∝ e−k|x|α)

, typically with 0.5 ≤ α ≤ 0.8. By using hyper-Laplacian prior the
heavy-tailed distribution of gradients in a natural image can be better modeled than using
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Laplacian and Gaussian priors. However, it will generate a confused non-convex problem
due to hyper-Laplacian with α < 1. Krishnan and Fergus analyzed two specific fraction
values, i.e., α = 1

2
and α = 2

3
by finding the roots of a cubic and quartic polynomial,

respectively. However, such method needs to compute different polynomials according to
the different α. Besides, selecting the best real root seems very troublesome. Zuo et al.
[5] proposed a generalization of soft-thresholding (GST) operator for non-convex lα-norm
minimization (0 ≤ α < 1) problem. The GST operator can easily solve the non-convex
sparse problems with arbitrary α values. While in most circumstances, the problem we
meet is a blind deconvolution owing to the unknown PSF. So compared with the non-blind
deconvolution, the task of the blind deconvolution becomes more challenging.

In this paper, we describe a blind deblurring approach based on hyper-Laplacian prior.
Compared with the previous work, this prior is mainly used for recovering the latent
image directly in non-blind deblurring. In our work, we use it to estimate the blur kernel.
Besides, in order to solve the non-convex problem caused by hyper-Laplacian prior, we
utilize the GST operator. At last, when the blur kernel has been estimated, we employ a
non-blind method to recover the final image. Experimental results restored by our method
prove better quality than that of Fergus et al. [6], Cho and Lee [7] and Pan et al. [8].

The rest of the paper is organized as follows. Section 2 mainly analyzes the blind de-
blurring model by using MAP based approach. Section 3 describes the process of solving
blind deblurring model via an alternative minimization scheme. Section 4 demonstrates
the experimental results compared with state-of-the-art blind deblurring algorithms. Fi-
nally, the conclusions are given in Section 5.

2. Blind Deblurring Model Based on MAP. In this section, we adopt MAP based
method to analyze the above degraded process of the image and then the blind deblurring
model generates. The MAP is a mode of the posterior distribution. It can be used to
obtain an estimation of unobserved quantities on the basis of empirical data. In our work,
the target of blind deblurring is to obtain x and k with the given y. So we can adopt
MAP based approach to analyze this ill-posed inverse problem. The MAP maximizes a
joint posterior probability distribution with respect to the blur kernel k and the latent
image x,

(x∗, k∗) = argmax
x,k

P (x, k|y). (1)

According to the Bayes theorem, this posterior distribution is proportional to the product
of a likelihood, a prior on the latent image x and a prior on the blur kernel k,

P (x, k|y) ∝ P (y|x, k)P (x)P (k). (2)

Next we apply negative logarithmic operation on Equation (2) and adopt the correspond-
ing likelihood and priors. Then work out Equation (1) can be transformed into solving
the following Equation (3)

(x∗, k∗) = argmin
x,k

{
∥x ∗ k − y∥22 + λ∥∇x∥αα + γ∥k∥22

}
, (3)

where ∇ = [∇h,∇v], ∇h and ∇v are the horizontal and vertical gradient operators, re-
spectively; λ and γ are the regularization parameters, 0.5 ≤ α ≤ 0.8. The right side of
Equation (3) consists of three terms. The first term is the data fitting term derived from
the degraded model of the image. The second term is the sparse hyper-Laplacian distri-
bution prior of x in the gradient domain. The third term is the Tikhonov regularization
on the blur kernel k.
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3. Deblurring Algorithm.

3.1. PSF estimation. Equation (3) can be solved by alternatively computing

x∗ = argmin
x

{
∥x ∗ k − y∥22 + λ∥∇x∥αα

}
(4)

and

k∗ = argmin
k

{
∥x ∗ k − y∥22 + γ∥k∥22

}
. (5)

x subproblem: Equation (4) is a non-convex problem due to hyper-Laplacian prior
term. Here, a half-quadratic splitting method is used to solve this problem. With the
introduction of an auxiliary variable g corresponding to∇x, Equation (4) can be rewritten
as

(x∗, g∗) = argmin
x,g

{
∥x ∗ k − y∥22 + β∥∇x− g∥22 + λ∥g∥αα

}
, (6)

when β is close to∞, the solution of Equation (6) approaches that of Equation (4). With
this formulation, Equation (6) can be efficiently solved through alternatively minimizing
x and g independently by fixing another variable.

The value of g is initialized to be zero. In each iteration, with the given g, x can be
obtained by solving the following subproblem

x∗ = argmin
x

{
∥x ∗ k − y∥22 + β∥∇x− g∥22

}
. (7)

The solution of x can be obtained by

x∗ = F−1

 F(k)F(y) + β
(
F(∇h)F(gh) + F(∇v)F(gv)

)
F(k)F(k) + β

(
F(∇h)F(∇h) + F(∇v)F(∇v)

)
 , (8)

where F(·) and F(·)−1 denotes the fast fourier transform (FFT) and the inverse FFT,

respectively. The F(·) is complex conjugate operator. Given a fixed x, g can be obtained
by solving Equation (9)

g∗ = argmin
g

{
β∥∇x− g∥22 + λ∥g∥αα

}
. (9)

Lemma 3.1. The GST operator
Let z be a single variable, if the optimal solution of

min
z

{
1

2
(z − f)2 + µ|z|q

}
(10)

is z∗, then z∗ is defined as

z∗ =

{
0, otherwise,

sgn(f)SGST
q (|f |; µ), if |f | > τGST

q (µ),
(11)

where the thresholding value τGST
q (µ) is

τGST
q (µ) = (2µ(1− q))

1
2−q + µq(2µ(1− q))

q−1
2−q . (12)

More details about SGST
q (|f |; µ) can refer to [5].

According to Lemma 3.1, the solution of Equation (9) is

g∗ =

{
0, otherwise,

sgn(∇x)SGST
α

(
|∇x|; λ

2β

)
, if |∇x| > τGST

α

(
λ
2β

)
.

(13)
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k subproblem: With the given x, we estimate the blur kernel k in the gradient space
by

k∗ = argmin
k

{
∥∇x ∗ k −∇y∥22 + γ∥k∥22

}
, (14)

where k(i, j) ≥ 0,
∑

i

∑
j k(i, j) = 1. Obviously, Equation (14) is a least squares mini-

mization problem and the solution of it can be fast obtained by [7].
After obtaining k, we set the negative elements to 0, and normalize it to ensure that

the sum of its elements is 1. The proposed kernel estimation process is performed in a
coarse-to-fine manner using an image pyramid. Algorithm 1 shows the main steps for
estimating blur kernel on one pyramid level.

Algorithm 1 Kernel Estimation

Input: Blurred image y, parameters λ, γ, βmax and α
1: Initialize x and k from the previous coarser level.
2: for i = 1→ 20 do
3: β ← 2λ
4: while β < βmax do
5: Estimate g according to (13)
6: Estimate x according to (8)
7: β ← 2β
8: end while
9: Estimate k according to (14)

10: λ← max
(

λ
1.1

, 1e−4
)

11: end for
Output: Blur kernel k

3.2. Latent image estimation. After the PSF has been estimated, the next work is to
employ a non-blind deconvolution method to recover the latent image. Firstly, we estimate
the latent image x1 via Equation (3) with setting γ = 0. Secondly, we estimate the latent
image x2 by using the L0-regularized gradient prior from [9]. Thirdly, we calculate a
difference map between two estimated images and remove artifacts with bilateral filtering.
Finally, we subtract the filtered difference map from x1 and obtain the final latent image.

4. Experimental Results. In this section, we present the results of the proposed algo-
rithm and compare it with the state-of-the-art blind deconvolution approaches of Fergus
et al. [6], Cho and Lee [7] and Pan et al. [8]. Firstly, some implementation details
about experiments are introduced. We empirically set the following parameters λ = 4e−3,
γ = 2 and βmax = 1e5, respectively. The value of α is typically set within the range of
[0.5, 0.8] according to [4]. At the same time, we conduct the abundant experiments about
the choice of α in our work. Finally, we set α = 0.8. The algorithms are tested on the
dataset from [10], which consists of 4 images and 8 different spatially invariant kernels to
give a total of 32 blurred images. The advantage of our proposed method can model the
heavy-tailed distribution of gradients well. More importantly, it can estimate the PSF
more precisely by using the GST operator.

In Figure 1, we plot the cumulative histogram of error ratios across the dataset for the
4 algorithms. Sum of squared differences error (SSDE) is used to estimate the accuracy
of the final results. Error ratios less than 3 are considered visually plausible. Evidently,
success percent of [6,7] is less than [8] and ours within this range. Although the values of
[8] and ours are both 84% when the ratio is below 3, what is more, success percent of ours
outperforms higher than [8] when the error ratio is below 2. So we can draw a conclusion
that the results of our algorithm are more precise.
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Figure 1. Cumulative histogram of the error ratios across the dataset

Figure 2. One visualization example. (a) Blurred image and ground truth
kernel. (b) Original sharp image. (c)-(f) represent the results of [6-8], and
ours, respectively. (g)-(l) are amplified from the regions in the black box
corresponding to (a)-(f) for easier visual inspection.

Moreover, we adopt two quantitative image assessment methods (i.e., peak-signal-to-
noise ratio (PSNR) and structural similarity index measure (SSIM)) to evaluate the qual-
ity of the restored images. PSNR and SSIM values in Table 1 (The numbers in the first
column denote image with different PSFs, e.g., 3-2 denotes image 3 blurred by PSF 2)
show that our approach obtained higher values than the other methods in most cases.

At last, an example from the above experiment is chosen and presented in Figure 2.
In this example, it presents the kernels and the final results deblurred by [6-8], and ours.
Besides, a representative region is extracted with green boxes and compared with the
ground truth image. Result restored by the proposed method is very clear nearly with
none artifacts and similar to the original image best.

5. Conclusion. To sum up, we propose a blind image deblurring method with hyper-
Laplacian prior. Based on MAP probabilistic framework, we put forward the model of
blind deblurring. In order to solve this model, an alternating minimization scheme is used.
Besides, the GST operator is introduced to deal with the non-convex optimal problem
caused by the hyper-Laplacian prior. A non-blind deblurring method is adopted to recover
the latent image when the PSF has been estimated. The experimental results prove that
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Table 1. PSNR (dB) and SSIM values of different non-blind deconvolution
methods. The numbers in bold denote the best assessment value.

images
PSNR (dB) SSIM

Blurry Fergus Cho Pan Ours Blurry Fergus Cho Pan Ours

1-1 22.57 25.32 27.12 25.35 30.12 0.73 0.85 0.86 0.85 0.92

1-2 21.59 24.58 25.87 25.06 26.35 0.68 0.83 0.83 0.85 0.88

1-3 24.97 26.93 28.67 28.24 29.72 0.81 0.88 0.89 0.91 0.91

1-4 17.10 22.61 16.81 19.95 24.75 0.46 0.73 0.38 0.56 0.82

1-5 24.25 31.49 29.03 28.94 26.52 0.79 0.94 0.91 0.93 0.90

1-6 21.96 22.37 24.24 31.12 26.94 0.71 0.78 0.79 0.93 0.90

1-7 19.07 22.17 23.80 20.51 26.96 0.56 0.78 0.77 0.58 0.90

1-8 18.74 20.75 19.54 22.08 26.53 0.52 0.67 0.53 0.69 0.88

2-1 21.14 22.75 24.50 28.14 29.29 0.62 0.76 0.79 0.90 0.92

2-2 20.11 25.61 23.48 22.62 22.89 0.55 0.84 0.80 0.77 0.79

2-3 22.91 25.77 28.80 26.45 29.35 0.71 0.84 0.90 0.88 0.92

2-4 17.13 24.01 23.53 17.13 16.98 0.38 0.77 0.73 0.35 0.38

2-5 22.12 25.33 26.23 22.83 24.55 0.67 0.86 0.88 0.79 0.86

2-6 20.86 20.70 24.83 19.72 24.21 0.60 0.67 0.79 0.60 0.85

2-7 18.21 23.23 20.29 17.60 23.71 0.43 0.79 0.57 0.45 0.82

2-8 18.01 24.59 24.40 17.72 27.20 0.39 0.80 0.79 0.40 0.90

3-1 20.95 20.06 25.10 21.12 26.10 0.74 0.74 0.87 0.79 0.89

3-2 19.88 24.39 25.86 23.44 27.24 0.68 0.88 0.88 0.87 0.93

3-3 23.68 27.23 28.57 25.56 28.58 0.84 0.93 0.93 0.91 0.92

3-4 15.69 22.97 24.02 19.35 16.67 0.40 0.83 0.81 0.70 0.36

3-5 22.06 27.34 25.98 22.77 26.47 0.78 0.93 0.87 0.84 0.89

3-6 20.53 19.17 23.53 23.49 22.59 0.70 0.70 0.80 0.86 0.81

3-7 16.93 21.32 24.36 17.50 27.13 0.46 0.81 0.86 0.54 0.94

3-8 16.99 20.65 22.09 21.08 22.47 0.47 0.75 0.80 0.76 0.84

4-1 21.88 22.28 26.36 25.45 28.79 0.77 0.78 0.86 0.86 0.92

4-2 20.50 23.41 25.50 19.81 25.94 0.70 0.83 0.83 0.68 0.85

4-3 24.72 30.23 28.83 28.38 29.06 0.85 0.94 0.91 0.93 0.93

4-4 16.54 16.76 20.95 15.75 16.33 0.49 0.18 0.63 0.38 0.43

4-5 23.52 24.64 24.79 21.26 26.94 0.82 0.86 0.88 0.80 0.93

4-6 21.66 22.02 24.96 22.92 24.13 0.75 0.79 0.81 0.79 0.86

4-7 17.88 18.67 26.78 19.32 25.23 0.54 0.53 0.89 0.59 0.90

4-8 18.08 18.43 22.25 20.02 25.17 0.56 0.45 0.72 0.62 0.81

the restored images are of higher quality than some state-of-the-art algorithms. However,
the proposed approach is limited to dealing with spatially invariant blur kernel, so we will
be committed to solving the blurred images with spatially variant kernel problem in the
future.
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