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ANIMATION QUADRANGULATION ON SYMMETRIC SURFACES
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Abstract. We study the problem of generating the quad meshes of symmetric surfaces
from triangle mesh sequences with high quality. We present a novel method to optimize
the cross field in the first stage of quadrangulation pipeline to strike a balance between
symmetry and animation. Our method is semi-automatic, which needs a few input sym-
metry points by the user. The experimental results we obtained show better in Hausdorff
distance and average angle compared to the state-of-the-art algorithms, while the singu-
larity points are less and the visual aesthetics are improved better.
Keywords: Mesh generation, Quadrangulation, Animation, Symmetric surfaces, Cross
field

1. Introduction. Quad mesh generation remains a topic of great interest and impor-
tance. This is especially true as the proliferation of dynamic geometry data acquisition
equipment progresses. For a number of different poses from the same object, powerful
geometric processing methods are required to refine them into high quality quad meshes
which are suitable for further use. Usually, the majority of dynamic data are from human
beings and animals, who naturally have symmetric property. Quad meshes with symme-
try are visually preferable and reduce deformation artifacts. In a standard production
pipeline, an artist who generates the mesh must take into account both animation and
symmetry, which is useful for the following production.

Field-guided parametrization-based quad meshing methods for animation such as anim-
ation-aware quadrangulation [1] have proven to be powerful. The pipeline typically follows
a three-stage approach as follows. Firstly, a cross field is constructed on the reference of
input surfaces which defines guiding information for the quad element orientation as well
as singularity placement. Secondly, the reference surface is parametrized into an integer
grid map [2] so that the canonical integer grid in the parameter domain induces a quad
mesh on the input geometry. Thirdly, quad meshes to all the other surfaces are deformed
from the reference one. However, presently, no method can produce quad meshes with
regard to both animation and symmetry. So, it is very meaningful to introduce the
symmetry property into the animation-aware quadrangulation process.

2. Related Work. Cross field is constituted by four coupled vector fields, which can
explicitly show local properties of surface. Cross field is first mentioned in [3]. Cross field
can be either designed manually or generated automatically. Cross field exhibits the same
type of singularities with quad mesh, so the generation of a highly regular quad mesh is
strongly related to the generation of cross field.

All the methods generate the smoothest cross field potentially subject to certain con-
straints. Sometimes the constraints are selected by the user [2]; sometimes they are
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computed by some heuristics [4]. [4] explored an algorithm for the robust computation
of symmetry maps for surface. [1] explored an algorithm for the synthetic sequences for
a rough animation of a triangulated model. Since none of the methods combine seamless
with symmetry and animation to improve results further especially for the animation of
human beings and animals.

Quadrangulation was discussed in the survey [5, 6]. Our solution applies to the class of
field-guided parametrization-based methods, first proposed in [7], then improved in [2, 8,
9, 10]. Apart from the pure guidance point of view, the field guided methods decompose
the quad mesh generation problem into two sub-problems, cross field generation and
global parametrization. Such things provide convenience for processing the problem of
mesh optimization.

For the quadrangulation of animation meshes, state-of-the-art methods also decompose
the problem into two sub-problems, parametrization for reference frame and mapped to
all the others. This class of methods consider the results of parametrization as texture
of surfaces, which can be easily mapped to other frames and then get the final quad
meshes with point-to-point correspondence. In this paper, the framework of our method
is followed by the way above.

Symmetry detection methods was discussed in the survey [11]. Symmetry can be de-
fined by considering self-isometrics of a surface with respect to a metric of the surface,
either intrinsic or extrinsic. Intrinsic symmetry preserves geodesic distance, while extrin-
sic symmetry preserves Euclidean distance. Kim et al. discussed the problem of intrinsic
symmetry map in [12, 13]. Animation causes the changes of pose, so it is not possible
to have perfectly isometric extrinsic symmetries during animation. To the best of our
knowledge, various recent works deal with symmetric detect or animation quad meshes
generation, but none handle the optimization of the quality of the animation quad meshes
with symmetric property.

In this paper, we present a novel method to optimize the cross field in the first stage of
pipeline to strike a balance between symmetry and animation. Our experimental results
show that the generated quad meshes adopt well to both symmetry and animation, which
can significantly improve visual aesthetics and obtain less singularities. The results we
obtained also show better in Hausdorff distance and average angle compared to the state-
of-the-art generation algorithms.

3. Animation Quadrangulation on Symmetric Surfaces.

3.1. Algorithm outline. Given an input sequence M0, . . . ,Mk of triangle meshes with
point-to-point correspondence, our method consists of the following steps (see Figure 1):

1. Construction of generalized bilateral intrinsic symmetry of the surface, stationary
line and transport;

2. Analysing all the deformations of triangle meshes during animation;
3. Combining seamlessly with the results of Step 1 and Step 2 for the final cross field

generation;
4. Parametrization and quad mesh extraction.

3.2. Symmetry detection. Our method is semi-automatic symmetry detection algo-
rithm. So, we have to give a small number of user-defined correspondences first. Different
from the state-of-the-art methods just for static triangle mesh, our method allows user to
choose point-to-point correspondences during animation, as the registration of the meshes.
All the input of the correspondences are fit for any one of the meshes in the animation.

Without loss of generality, we select mesh M0 as the reference mesh. (pi, qi) ∈ (M0,M0),
i = 1, . . . , n are the input pairs of symmetric landmarks. Then we construct the general-
ized bilateral intrinsics symmetry similar to the algorithm of [4].
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Figure 1. Algorithm flow chart

Firstly, we calculate the conformal map φ : M → Ĉ of the reference mesh to the
plane, and then transform the landmarks to the extended complex plane zi = φ(pi) and
wi = φ(qi), i = 1, . . . , n.

Secondly, we find the anti-involution Möbius m̂(z) minimizing the deviation of m̃(z)
from wi, i = 1, . . . , n. Here,

m̂(z) =
az̄ + b

cz̄ − ā
, (b, c ∈ R) (1)

For a proof see [4], we can get that an anti-Möbius transformation m̂(z) =
az̄ + b

cz̄ + d
is an

anti-involution iff the matrix of coefficients

(
c d
−a −b

)
is hermitian, that is d = −ā and

b, c ∈ R.
The stationary circle C of the anti-involution can be defined by m̂(z) = z.
Thirdly, we transfer the circle C to the real axis though a Möbius transformation m.

Here, the stationary circle of m̂ has the explicit equation as follows,

|z − z0| = r2,

(
z0 =

a

c
, r2 =

∣∣∣a
c

∣∣∣ +
b

c

)
(2)

For there are three degrees of freedom for the Möbius transform mapping it to the real
axis, so we just select three equal distant points ti (i = 1, 2, 3) on the circle C to find the
Möbius transformation m.

ati + b = (cti + d)xi, (i = 1, 2, 3;xi ∈ R) (3)

Fourthly, we map the landmarks zi, wi with m and extract optimal symmetric points
in the least-squares sense and use smooth deformation ψ to move the landmarks to their
optimal symmetric configurations. Here,

ψ(m(zi)) = ψ(m(wi)) (4)

Finally, our final map is g = ψ ◦m ◦ φ, the symmetry map in these new coordinates is
z → z and the transport and stationary line can be computed as follows:

Transport of Cross field Rg. To define cross field that fit the symmetry map g, we
should compare the values of the field at symmetric points. The differential Dg defines a
natural map from a given point p to g(p). We compute the Singular Value Decomposition
(SVD for short) of Dg

Dg = UΣV T (5)

and get Rg = UV T , which is the closest orthonormal transform to the differential Dg.
Stationary Line C. Because of the symmetry, if v is a symmetric cross field, and p is a

point on stationary line, we must get Rgv(p) = v(p). So it must be one of the following
situations: (1) p is a singularity point; (2) one of the directions of v is the stationary
direction sp of Rg

p; (3) one of the bisectors of angles formed by consecutive vectors of v is
aligned with sp.
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3.3. Animation analysis. Our method is automatic animation analysis algorithm, whi-
ch presented in [1] first. We use the selected mesh M0 in Section 3.2 as the reference
mesh. The steps are as follows:

Local deformation analysis. For every triangle t = (a, b, c), the local x-axis is aligned
with b-a, z-axis is aligned with the normal vector of triangle and the origin point at a.

The deformation gradient can be presented by the affine transformation from triangle
of M0 to its corresponding triangle of Mi one by one. We use J j

i as the deformation
gradient of ti in Mj. For we consider the only component of deformation, we treat the

triangles in a common XY 2D-coordinate axis. So J j
i can be obtained by solving a 2 × 2

linear computation.
Then, we compute the SVD of J j

i .

J j
i = U j

i Σj
iV

j
i (6)

From the knowledge of SVD, we know that the columns of V are principal directions
under transformation of J , which are always orthogonal. So we use θ and θ + π/2 to
present the columns of V relatived to the local 2D coordinate system of the triangle. The
singular values s1 and s2 in the diagonal matrix Σ represent the stretching induced by J
along the directions. We define the stretch factor sj

i as |s1| / |s2| − 1.
Animation deformation analysis. In order to obtain the cross field that fit the anima-

tion, we compute the average θ̄ as follows:

θ̄t =
1

4
Φ

(
Σis

i
tΨ (4θi

t)

Σisi
t

)
(7)

Here, Ψ(θ) : R → R2 = (cos θ, sin θ) and Φ(x, y) : R2 → R = atan2(y, x). We also
compute the average stretch as follows:

s̄t =
1

Σk
i=1s

i
t

k∑
i=1

si
ts

i
t (8)

3.4. Combination. From the above steps, we get both symmetry and animation analysis
of the meshes. Now we compute the cross field that strikes a balance of the two. Our
method consists of the following steps:

1. Set hard constraints at the stationary line and set animation deformation as soft
constraints, and then extend field to the rest of M0 by running MIQ smoothing algorithm.
We can express the energy of the cross field as follows:

Esmooth = (1 − α)
∑

ei,j∈E

(
θi + ki,j +

2π

4
pi,j − θj

)2

+ α
∑
t∈F

s̄t

(
θt − θ̄t

)2
(9)

Here, ki,j is the fixed rotation angle between the local frames of ti and tj. pi,j is an
integer variable, called the period jump. α is used to allow the user trading off between
smoothness and soft constraints.

2. Use field transport Rg to symmetrize field v by averaging over orbits O, and the
results are v̄. The orbit of t is defined as the union of all triangles in its 1-ring and the
1-ring of the triangle containing g(c). We define a weight si(t) to every ti ∈ O(t) inversely
proportional to its geodesic distance from O(c) = {c, g(c)}.

si(t) = Φ

(
min

c′∈O(c)
∥ci − c′∥

)
(10)

Here, Φ is a Gaussian with standard deviation equals the maximum of the triangles’ 1-ring
diameter. Then si(t) is normalized to have a unit sum for the final computation.

3. Repeat Step 1 to obtain the final cross fields v using v̄ as soft constraints.
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3.5. Parametrization and quad mesh extraction. We use state-of-the-art methods
to complete the following steps. First, parametrization of the reference mesh can be
computed by mixed-integer quadrangulation method [2]. Then, the quadrangular mesh is
mapped to all the other meshes. Finally, we extract all the meshes with [14], producing
the sequence of quad remeshings.

4. Results and Comparison. Our framework has been implemented in C++, by using
the libigl library [15] and CoMISo library [16] for mesh processing, and the Eigen library
[17] for numerical computation. At last, we use libQEx [14] to implement quad extraction.

In Figure 2, we show a comparison of bouncing dataset with our method and [1] method
(AAQ method for short). Our result is on the left, and AAQ result is on the right. It is
obvious that quad meshes computed with our method show better nature and symmetric
properties during the animation. Not only that, the number of singularities is also obvi-
ously decreased. We think the results meet our expectations, for when not considering
the situation of symmetry, we could inevitably take something just like the clothes fold
as singularity. However, this situation can be optimized by our processing. In Table 1,
we show the comparison of singularity numbers.

In Figure 3 and Figure 4, we show the comparisons of Hausdorff distance and average
angle with our method and AAQ method at each pose in the sequence. In all the graphs,
x-axis is frames, which means time. Y-axis is average angle for the left and Hausdorff
distance for the right. Our method has an obvious improvement on average angle in most
cases. The gaps of Hausdorff distance are not very clear all the time, but our method is
still better than AAQ method on them.

Figure 2. Quad meshes of bouncing datasets computed with our method
(left) and AAQ method (right)

Table 1. Comparison of singularity numbers

Our method AAQ method

Models
Total
points

Singularity
points

Proportion
Total
points

Singularity
points

Proportion

bouncing 5195 88 1.68% 5084 136 2.68%
handstand 5448 86 1.58% 4925 185 3.76%

squat1 5214 73 1.4% 4901 112 2.29%
squat2 5418 105 1.92% 5159 174 3.37%
swing 5367 81 1.51% 5009 139 2.78%
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Figure 3. Average angle (left) and Hausdorff distance (right) difference
between our method (red) and AAQ methed (blue) of the samba1 dataset
(up) and squat1 dataset (down)

Figure 4. Average angle (left) and Hausdorff distance (right) between our
method (red) and AAQ methed (blue) of the swing dataset (up) and squat2
dataset (down)

5. Conclusion and Future Work. We presented a novel method to generate the quad
meshes of symmetric surfaces of animation. Our method is the improvement of the meth-
ods of [1, 4]. The key idea of our method is to strike a balance between symmetry
and animation which makes the cross field with high quality. All the improvements are
computed in the first stage of the pipeline. And the method is semi-automatic. The ex-
perimental results we get show better than state-of-the-art method not only in the visual
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aesthetics but also in the data analysis, such as singularity numbers, Hausdorff distance
and average angle.

Our method still has some limitations. It is not fully automatic, which needs a few
user interactions. While we didn’t make good use of the characteristics of the animation
sequence to complete the symmetry judgement, which is one of our future exploration
directions. On the other hand, the limitation is about the input data. The input needs to
be a sequence of triangle meshes with point-to-point correspondence, and the next step
we will try to introduce the improvement of the method just like we used in this symmetry
judgement to the registration of any kind of input sequences for better robustness.
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[5] D. Bommes, B. Lévy, N. Pietroni et al., Quad-mesh generation and processing: A survey, Computer
Graphics Forum, vol.32, no.6, pp.51-76, 2013.

[6] D. Panozzo, Demystifying quadrilateral remeshing, IEEE Computer Graphics & Applications, vol.35,
no.2, pp.88-95, 2015.
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