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Abstract. This brief studies the output tracking control problem for a class of un-
known nonlinear systems subject to actuator magnitude and rate saturation. We first
design multiple extended state observers (ESOs) which are used to identify nonlinear
time-varying dynamic model. Then, based on ESOs, we apply the command-filtered
backstepping technique to constructing a constrained nonlinear control law to solve the
problem. Our constrained control law contains command filter for eliminating the impact
of derivative and control saturation, and we will show that tracking errors are asymptot-
ically convergent. Finally, a two-link robot manipulator is used to demonstrate that the
proposed constrained control algorithm has a very reliable tracking ability and a satisfac-
tory robustness and process dynamics variations.
Keywords: Actuator saturation, Nonlinear control, Extended state observer (ESO),
Command-filtered backstepping, Uncertainties

1. Introduction. Input saturation problem is widely presented in many practical control
systems [1-4]. If input saturation is ignored in the control design, the close-loop system
could become unstable. Hence, many researchers have focused on study of various control
problems subject to actuator saturation [1-9]. We all know, a large number of actual
control systems are nonlinear and multiple-input-multiple-output (MIMO). And actuator
rate saturation can also cause unstability for closed-loop control systems. However, most
of the research achievements of input saturation are mainly concentrated on linear systems
and actuator magnitude constraint problem; the saturation problems of nonlinear systems
and rate constraint problem are still difficult points.

In control theory, backstepping is a technique developed in 1990s for designing sta-
bilizing controls for a special class of nonlinear dynamical systems [10]. These systems
are built from subsystems that radiate out from an irreducible subsystem that can be
stabilized using some other method [11]. There are differential expansion and constraint
problems in traditional backstepping control. Therefore, in recent years, many research
results have been reported (see, for instance, [12-14] and the references therein).

Since natural dynamic process is highly complex nonlinear, the precise dynamic math-
ematical model is difficult to be obtained. In recent years, many researchers start to draw
their attention to model-free control [8,9,15]. Although adaptive technique-based fuzzy
logic and neural network have been intensively researched for nonlinear systems in the last
two decades [16,17], there is still no assurance of high convergence speed, the overheating
phenomenon and so on; meanwhile, there are no general methods to choose the number
of the fuzzy rule base and hidden units of common neural network.

In this brief paper, a novel constrained nonlinear control scheme with extended state
observer (ESO) using command-filtered backstepping technique, is proposed for tracking
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control tasks. In our method, multiple ESOs are used to observe states and unknown
nonlinear time-varying function vector. In doing so, a new variable vector is introduced
for designing constrained controller. The proposed approach has several advantages, which
make this method suitable for control applications. First, it just depends on the real-time
measurement output of the controlled plant. Second, it does not require precise dynamic
mathematical model and other testing signals. Third, it is simple and easily implementable
with small computational burden and has strong robustness.

The remainder of this brief is organized as follows. In Section 2, problem formulation is
given; main results are presented in Section 3. Section 4 gives a two-link robot manipulator
simulation example. The conclusions are drawn in the last section.

2. Problem Formulation. Consider the following MIMO nonlinear system as

ÿ1 = f1(y1, ẏ1, · · · , ym, ẏm, t) + B1U

ÿ2 = f2(y1, ẏ1, · · · , ym, ẏm, t) + B2U

· · ·
ÿm = fm(y1, ẏ1, · · · , ym, ẏm, t) + BmU

(1)

Define Y = [y1, y2, · · · , ym]T , X = [X1, X2]
T =

[
Y T , Ẏ T

]T

, U = [u1, u2, · · · , um]T , and

F (X, t) =


f1(y1, ẏ1, · · · , ym, ẏm, t)
f2(y1, ẏ1, · · · , ym, ẏm, t)

...
fm(y1, ẏ1, · · · , ym, ẏm, t)

 , B =


B1

B2
...

Bm

 =


b11 b12 · · · b1m

b21 b22 · · · b2m
...

...
. . .

...
bm1 bm2 · · · bmm


Hence, system (1) also can be described as follows

Ẋ1 = X2, Ẋ2 = F (X, t) + BU, Y = X1 (2)

In practice, because the input of the controlled plant (1) cannot change too fast within a
small time interval due to the “inertia” of the actuator. The control inputs are subject
to magnitude and rate constraint as follows

amin ≤ U ≤ amax, δmin ≤ U̇ ≤ δmax (3)

where amin and amax are the minimum and maximum values of magnitude constraints of
the control inputs. δmin and δmax are the minimum and maximum values of rate constraints
of the control inputs.

3. Main Results.

3.1. ESO design. For the following ith (i = 1, 2, · · · ,m) subsystem of Equation (1),

ÿi = fi(y1, ẏ1, · · · , ym, ẏm) + BiU (4)

Define xi1 = yi, xi2 = ẏi, and then, it can be written as state space by

ẋi1 = xi2, ẋi2 = fi(X, t) + BiU, yi = xi1 (5)

Because fi(·) and state x2 are unknown, the third-order ESO is designed, which is used
to estimate the state x2 and unknown function fi(·). Define the unknown function fi(·)
as an extended state xi3. Let xi3 = fi(X, t), ẋi3 = ωi, and we assume that |ωi(t)| < r.
Then system (5) is equivalent to

ẋi1 = xi2, ẋi2 = fi(X, t) + BiU, ẋi3 = ωi, yi = xi1 (6)
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In order to estimate the state xi2 and unknown function fi(X, t), we design the following
third-order ESO [10,11]:

˙̂xi1 = x̂i2 − li1ei1

˙̂xi2 = x̂i3 + BiU − li2fal(ei1, αi1, σi1)

˙̂xi3 = −li3fal(ei1, αi2, σi2)

ŷi = x̂i1

(7)

where ei1 = yi−ŷi = xi1−x̂i1 and x̂i1, x̂i2, x̂i3 are the observers of xi1, xi2, xi3. 0 < αi1 < 1,
0 < αi2 < 1, σi1 > 0, σi2 > 0, lij > 0, j = 1, 2, 3 are parameters of observer (7). And the
nonlinear function fal(·) is defined as

fal(e, α, σ) =

{ |e|αsgn(e), |e| > σ
e

σ1−α
, |e| ≤ σ

(8)

where α includes αi1 and αi2, e is ei1, σ includes σi1 and σi2. Let T be sampling period of
control, in general, σ is selected as σ = 5 ∼ 10T . Until now, there is no reliable theoretical
analysis method available for third-order ESO. Fortunately, according to [18], if suitable
parameters of observer (7) are selected, the following results can be obtained.

lim
t→∞

|x̃i2| < li1

(
r

li3

)1/αi2

= εxi2

lim
t→∞

|x̃i3| < li2

(
r

li3

)1/αi2

= εfi(X,t)

(9)

where x̃i2 = xi2 − x̂i2, x̃i3 = xi3 − x̂i3. Hence, we know the suitable observer parameters
can make the state estimation errors x̃i1, x̃i2 and function estimation error f̃i(X, t) =

x̃i3 = fi(X, t) − f̂i(X, t) are uniformly ultimately bounded (UUB).
If m above suitable ESOs are designed for Equation (2), the estimation errors of X1,

X2, F (X, t) are ensured UUB. And the designed ESO of Equation (2) can be described
as

˙̂
X1 = X̂2 + Θ1,

˙̂
X2 = Θ2 + BU (10)

where

Θ1 = −


l11e11

l21e21
...

lm1em1

 , Θ2 =


x̂13 − l12fal(e11, α11, σ11)
x̂23 − l22fal(e21, α21, σ21)

...
x̂m3 − lm2fal(em1, αm1, σm1)


3.2. ESO based controller design and stability analysis. It can be seen that above
Equation (10) is strict-feedback form, so we can design the controller via backstepping
idea. Here, we introduce a new variable N , and make U̇ = N . Then Equation (10) can
be extended as

˙̂
X1 = X̂2 + Θ1,

˙̂
X2 = Θ2 + BU, U̇ = N (11)

Define the tracking error variables E1, E2 and E3, which are introduced as follows

E1 = X̂1 − Xc
1, E2 = X̂2 − X̂c

2, E3 = U − U c (12)

where Xc
1, X̂c

2 and U c are the command filtered version of trajectory tracking X1, virtual

control signal X̂d
2 and Ud, respectively. Considering differential expansion problem, the

first-order command filter

˙̂
Xc

2 = Λ
(
X̂d

2 − X̂c
2

)
(13)
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is employed to track the desired X̂d
2 . The filter time constant matrix Λ = diag{γ1, γ2, · · · ,

γm} > 0 should be as large as possible to promise the fast tracking.
The control input U is subject to magnitude and rate constraints like (3). Here, we

choose the constrained command filter to track the desired Ud [11], which is shown in
Figure 1, the constrained command filter can eliminate the saturation of magnitude and
rate of the control input via magnitude limiter and rate limiter, and the state-space model
of constrained command filter can be described as{

q̇1

q̇2

}
=

[
q2

2ξωn

[
SR

(
ω2

n

2ξωn
(SM (u) − q1)

)
− q2

]]
(14)

where [
q1

q2

]
=

[
xc

ẋc

]
, u = xd

SM(·) and SR(·) are saturation function of magnitude and rate respectively, and their
upper and lower limits can be designed by constraints (3). ξ and ωn are damping and
bandwidth of filter respectively.

Magnitude 

Limiter
Rate 

Limiter

Figure 1. Structure of constrained command filters

Redefine tracking errors

Ē1 = E1 − ϵ1, Ē2 = E2 − ϵ2 (15)

where compensated filter errors ϵ1 and ϵ2 are designed as

ϵ̇1 = −K1ϵ1 + X̂c
2 − X̂d

2 + ϵ2 (16)

ϵ̇2 = −K2ϵ2 + B
(
U c − Ud

)
(17)

where K1 and K2 are controller gain, which are designed later. From (12), and (15)-(17),
we have

˙̄E1 = X̂2 + Θ1 − Ẋc
1 + K1ϵ1 − X̂c

2 + X̂d
2 − ϵ2 (18)

˙̄E2 = BU + Θ2 − ˙̂
Xc

2 + K2ϵ2 − B
(
U c − Ud

)
(19)

Ė3 = N − U̇ c (20)

The virtual control laws X̂d
2 , Ud and global control law N are designed as

X̂d
2 = Ẋc

1 − Θ1 − K1E1 (21)

Ud = B−1
(
−K2E2 − Θ2 + Ē1 +

˙̂
Xc

2

)
(22)

N = −K3E3 + BT Ē2 + U̇ c (23)

where K1, K2 and K3 are positive definite matrices.
Consider the Lyapunov function

V =
1

2
ĒT

1 Ē1 +
1

2
ĒT

2 Ē2 +
1

2
ET

3 E3 (24)
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The time derivative of V with respect to time and substituting (21)-(23), it yields

V̇ = ĒT
1

˙̄E1 + ĒT
2

˙̄E2 + ET
3 Ė3

= ĒT
1

(
X̂2 + Θ1 − Ẋc

1 + K1ϵ1 − X̂c
2 + X̂d

2 − ϵ2

)
+ ĒT

2

(
BU + Θ2 − ˙̂

Xc
2 + K2ϵ2 − BU c + BUd

)
+ ET

3

(
N − U̇ c

)
= − K1

∥∥Ē1

∥∥2 − K2

∥∥Ē2

∥∥2
+ ĒT

2 BE3 + ET
3

(
N − U̇ c

)
= − K1

∥∥Ē1

∥∥2 − K2

∥∥Ē2

∥∥2 − K3 ∥E3∥2 ≤ 0

Through the above analysis, it can be seen that the tracking errors Ē1, Ē2, E3 are as-
ymptotic convergence.

From Equations (16) and (17), if it is sure that X̂c
2−X̂d

2 and U c−Ud are bounded, then
ϵ1 and ϵ2 are bounded. Further E1 and E2 are bounded. Combined with the conclusion
of Section 3.1, we can get the boundedness of all error signal.

To give a clear idea of the overall design procedure, we give a flow chart as Figure 2.

MIMO 

System

Eq.

(14)

d
U

Eq.

(17)

2
ESO

1 2 1 2
ˆ ˆ, , ,X X

U Y

c
U

1

s

NEq.

(23)

3E

Eq.

(13)
2

ˆ cX

1

2
ˆ dX Eq.

(22)

Eq. 

(16)
2E

2
X̂

2
E

Eq.

(21)

21 1
ˆ ,X

1
ˆ cX

Figure 2. The flow chart of the design procedure

Remark 3.1. 1) The proposed ESO-based nonlinear control method does not need to know
the differential signal Ẏ and unknown function vector F (X, t).

2) So far, active disturbance rejection control (ADRC) has no strict stability proof [18].
In this paper, we give the stability analysis for the proposed control approach, and moreover
the control constraint problem is considered.

3) Like ADRC, the proposed control algorithm does not need accurate control gain ma-
trix B. Also, the developed control method can achieve the purpose of dynamic decoupling.

4. Simulation Results. In this section, simulation studies are carried out to show the
effectiveness of the proposed ESO-based constrained nonlinear controller. Consider a two-
link robot manipulator as shown in Figure 3, and its dynamic equation is given as follows
[19]:

M(q)q̈ + C(q, q̇)q̇ + G(q) = τ (25)

where

M(q) =

[
(m1 + m2)l

2
1 m2l1l2(s1s2 + c1c2)

m2l1l2(s1s2 + c1c2) m2l
2
2

]
,

C(q, q̇) = m2l1l2(c1s2 − s1c2)

[
0 q̇2

−q̇1 0

]
,

G(q) =

[
−(m1 + m2)l1gs1

−m2l2gs2

]
,



1410 N. JI, D. XU AND F. LIU

and q = [q1, q2], q1, q2 are generalized coordinates, M(q) is the moment of inertia, C(q, q̇)
includes Coriolis, centripetal forces, and G(q) is the gravitational force. Other quantities
are: link mass m1, m2, link length l1, l2, angular position q1, q2, applied torques τ =
[τ1, τ2]

T , the acceleration due to gravity g = 9.8(m/s2), and short-hand notation s1 =
sin(q1), s2 = sin(q2), c1 = cos(q1) and c2 = cos(q2). Let x1 = q1, x2 = q2, x3 = q̇1 and
x4 = q̇2. In simulation, two-link robot’s parameters are given as m1 = m2 = 0.5, l1 = 1
and l2 = 0.8.

1
q

1
l

2
l

1
m

2
m

2
q

Figure 3. The configuration of two-link robot manipulator

Let Y = X1 = [x1, x2]
T , X2 = [x3, x4]

T , U = [τ1, τ2]
T . Then, system (25) can be

expressed as follows:

Ẋ1 = X2, Ẋ2 = F (X, t) + BU, Y = X1

where F (X, t) = −M−1(q) (C(q, q̇)q̇ + G(q)) + (M−1(q) − B)U and F (X, t) is assumed
unknown. In the simulation, B is chosen as

B =

[
2 −4.5

−4.5 13

]
.

The initial conditions of the system are taken as X(0) =
[
XT

1 (0), XT
2 (0)

]T
= [0.5, 0.5, 0,

0]T . The desired trajectories are selected as Xc
1 = [sin(2t), sin(2t)]T . The constraints of

control input U are[
−20
−8

]
≤ U ≤

[
20
8

]
,

[
−150
−150

]
≤ U̇ ≤

[
150
150

]
.

The designed control parameters are chosen as

K1 = K2 =

[
10 0
0 15

]
, K3 =

[
100 0
0 150

]
.

The parameter of filter (13) is

Λ =

[
200 0
0 400

]
.

The parameters of ESO are designed as α11 = α12 = α21 = α22 = 0.9, σ11 = σ21 = 10,
σ12 = σ22 = 100, l11 = l21 = 200, l12 = l22 = l13 = l23 = 105. And constrained command
filter parameters are shown in Table 1.

The simulation results for the first link are shown in Figure 4, and those for the second
link are shown in Figure 5, where “ref.” is the preset reference trajectory. In Figure

Table 1. Constrained command filter parameters

Variables ξ ωn Mag. limit Rate limit
u1 1 50 ±20 ±150
u2 1 50 ±8 ±150
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7.0655   7.066      7.0665

1

1.0002

1.0004

5.235 5.24

−0.985

−0.98

Figure 4. Tracking curves of link 1
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Figure 5. Tracking curves of link 2

4 and Figure 5, we can observe that the reference trajectories and actual responses of
two links in robot manipulator almost overlap with each other, and the good tracking
performance is obtained. The control input signals are shown in Figure 6, and we can
see that the control signals are in constraints. These simulation results demonstrate the
tracking capability of the proposed controller and its effectiveness for control tracking of
constrained nonlinear systems.
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Figure 6. Control input signals

5. Conclusion. This brief has revisited the problem of output tracking control for a class
unknown nonlinear systems subject to actuator saturation. Based on dynamic model
of multiple ESOs and introduced new variable vector, we design the nonlinear control
algorithm with command-filtered backstepping technique. The proposed control law does
not need the precise dynamic mathematical model of controlled plant, just depends on
the real-time measurement output of the controlled plant. A two-link robot manipulator
example has been presented to illustrate the effectiveness of the proposed design. In
future, research topic is to modify the algorithm for high-order system while this paper
is for second-order system.
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