
ICIC Express Letters
Part B: Applications ICIC International c⃝2016 ISSN 2185-2766
Volume 7, Number 6, June 2016 pp. 1323–1328

SOFT DSP DESIGN METHODOLOGY OF ILBC SPEECH DECODER
ON NIOS II EMBEDDED PLATFORM

Wen-You Huang and Chian C. Ho∗

Department of Electrical Engineering
National Yunlin University of Science and Technology

No. 123, University Road, Section 3, Douliou, Yunlin 64002, Taiwan
∗Corresponding author: futureho@yuntech.edu.tw

Received November 2015; accepted February 2016

Abstract. Based on the emerging and significant Soft DSP technique, this paper de-
velops Soft DSP of iLBC speech decoder to boost Voice over Internet Protocol (VoIP)
embedded system without extra coprocessor cost and power consumption. This paper not
only illustrates the HW/SW codesign methodology of Soft DSP of iLBC speech decoder
in detail, but also gives a step-by-step implementation tutorial on Nios II embedded plat-
form. The experimental results of Soft DSP of iLBC speech decoder can verify Soft DSP
technique without pure HW cost and power consumption achieves faster processing per-
formance than the pure SW technique. Soft DSP technique has been entitled to be the
development mainstream of VoIP embedded system field.
Keywords: iLBC speech decoder, Soft DSP, VoIP embedded system

1. Introduction. The advent of “Soft DSP” technique has made it attractive to per-
form faster signal processing functions in the embedded system domain. Especially, “Soft
Speech Codec” is quite beneficial to VoIP embedded system placing important empha-
sis on real-time speech processing and cost-effective chipset architecture. Therefore, this
paper takes “Soft Speech Codec” as a tutorial example to interpret the design and imple-
mentation methodology of “Soft DSP” technique.

Among a variety of low bitrate speech codec standards currently adopted by VoIP
industries, internet Low Bitrate Codec (iLBC) is likely the favorite choice, because it is a
royalty-free and open source narrowband speech codec [1]. More importantly, the speech
quality of iLBC is more robust to packet loss or packet delay than patented ITU-T G.729A
and G.723.1 under a very noisy environment [2-6]. The experimental result evaluated by
Dynastat Inc. proves that Mean Opinion Score (MOS) speech quality of iLBC is better
than that of G.729A and G.723.1 under various packet loss conditions [5]. Because of
so many advantages, iLBC has already been involved into IETF RFC 3951 standard
and integrated into a lot of well-known industrial VoIP softphones and hardphones, such
as Gizmo5, webRTC, Ekiga, QuteCom, Google Talk, Yahoo! Messenger, and Polycom
IP Phone. Therefore, this paper will focus on the implementation of iLBC codec and
further improve the processing performance of iLBC codec by “Soft DSP” technique,
not improve the perceptual speech quality of iLBC codec. Specifically, this paper will
pay more concentration on exploring iLBC speech decoder’s architecture and breaking its
computational bottleneck without support of extra coprocessor.

The organization of this paper is as follows. In the next section, a brief overview
about the architecture of iLBC speech decoder is given. Then the “Soft DSP” technique
based on “Custom Instruction” is adopted and clarified against those pure hardware
(HW) or software (SW) techniques in Section 3. Section 4 and Section 5 present design
methodology and experimental results implemented on reconfigurable Nios II embedded

1323



1324 W.-Y. HUANG AND C. C. HO

platform to compare “Soft DSP” with pure HW/SW techniques. Finally, Section 6 draws
conclusions and future works.

2. Architecture of iLBC Speech Decoder. Figure 1 shows the architecture and flow-
chart of iLBC speech decoder. The functionality of each block in iLBC speech decoder is
described in order as below. Firstly, the speech parameters are extracted from the payload
of the Internet bitstream. Secondly, the corresponding Linear Spectrum Frequency (LSF)
vectors are found by simple lookup tables after coefficients of Linear Prediction Coding
(LPC) are decoded and interpolated. Thirdly, the 57/58-sample start state needs to be
reconstructed through lots of fixed data tables. Fourthly, the memory for code construc-
tion is set up by the data of the decoded residual. Fifthly, the residual of all sub-frames is
constructed. Sixthly, the residual is enhanced with the post filter. Seventhly, the residual
of all sub-frames is synthesized. Finally, the post processing of high-pass filter is carried
out, if necessary [6].

Figure 1. Architecture of iLBC speech decoder

Among all blocks of iLBC speech decoder in Figure 1, the computational complexity
of the third block, start state reconstruction, is simpler but heavily repeated. That is
where our developed “Soft Speech Codec” can work well and improve further, because
“Soft DSP” technique is better at solving such a computational bottleneck than those
pure HW or SW techniques. More explicit reasons will be clarified in Section 3.

3. Soft DSP against Pure HW/SW Techniques. With the on-going progress of
semiconductor technology, it has made “System-on-Chip” (SoC) come true, as well as
the reconfigurable computing platform. Reconfigurable computing platform composed
of a Reduced Instruction Set Computer (RISC) processor core (e.g., ARM, PowerPC,
or Nios II), embedded memory, and programmable logic is a preferable alternative to
Application-Specific Integrated Circuit (ASIC) platform and general-purpose processor
system, since it can own full advantages of throughput of hardware logic and flexibility
of software processors [7-9]. Next, this paper will address the performance-to-cost-ratio
difference between the pure HW technique, the pure SW technique, and the HW/SW
codesign method like “Soft DSP” technique, and explain why the “Soft DSP” technique
is the best way to boost the speech codec on the reconfigurable computing platform like
Nios II embedded platform.

Pure HW technique means the computationally intensive segments of code are processed
and accelerated by specific hardware fabric, especially by the dedicated coprocessor like
Codec chip or the comprehensive coprocessor like DSP. This specific hardware fabric,
whether Codec chip or DSP, is working apart from the general-purpose central processor



ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.7, NO.6, 2016 1325

and is able to access the memory, bus, interface and peripherals independently. The pure
HW technique with the specific hardware fabric can execute dedicated or comprehensive
arithmetic functions much more quickly than any of pure SW and “Soft DSP” techniques,
but it consumes more circuit area and power consumption than other techniques. In
addition, DSP users must take time to get familiar with another instruction set or specific
programming language based on the DSP architecture.

There are a large number of pure SW techniques to raise the processing performance,
like algorithm-level reformation, code optimization by profiling tools, preliminary lookup
table, programming by assembly or low-level language, and compiler efficiency evolution.
They are performed only with the general-purpose central processor, and do not need
additional coprocessor hardware fabric and power consumption. So the pure SW tech-
niques are usually the most economical solution to cost-critical issues. However, all pure
SW techniques above can only contribute a limited extent of improvement. These SW
techniques are usually not good enough.

“Soft DSP” technique is also referred to as “Custom Instruction” or “Very-Long-
Instruction-Word-like (VLIW-like) RISC”. They are actually similar to each other, be-
cause all of them raise the embedded signal processing performance by running some
custom instructions instantly and directly on the dedicated VLIW-style logic blocks [10-
12]. From the circuit configuration in Figure 2, it is clearly seen that the dedicated logic
blocks are compact and adjacent to Arithmetic Logic Unit (ALU) in the processor’s data
path configuration. Therefore, “Soft DSP” technique not only can finish some compli-
cated arithmetic as soon as the pure HW technique, but also can make circuit cost and
power consumption considerations as simple as the pure SW technique. “Soft DSP” tech-
nique can own both advantages of effective HW design and efficient SW design without
independent memory, bus, interface and peripherals. Therefore, this paper will adopt
“Soft DSP” technique to boost VoIP speech codec and illustrate its design methodology.

Figure 2. Circuit configuration for Soft DSP technique

4. Design Methodology. As commented in Section 3, “Soft DSP” technique is an
HW/SW codesign method utilizing throughput of hardware logic and flexibility of software
processor. So reconfigurable Nios II embedded platform featuring programmable processor
core and tailored instruction set is one of highly qualified benchmarks to implement a
lab example about “Soft DSP” technique and learn the interesting HW/SW codesign
methodology. This paper will make good use of reconfigurable Nios II embedded platform
and Nios II HW/SW seamless toolchain, like “SOPC Builder”, “Quartus II”, and “Nios II
IDE”, to design the experimental implementation and illustrate the design methodology
of “Soft Speech Codec” as below.

Besides, as mentioned in Section 2, the code of start state reconstruction block of
iLBC speech decoder is where the “Soft DSP” technique is good at and where this paper



1326 W.-Y. HUANG AND C. C. HO

is interested in because it is rightly a simpler but heavily repeated computation. The
experimental implementation in this paper will concentrate on the software code of start
state reconstruction block of iLBC speech decoder, and will create a dedicated logic and
a custom instruction to replace and improve on that.

Figure 3(a) shows some original code segments of start state reconstruction block of
iLBC speech decoder. In the highlighted section of software code of Figure 3(a), the
variable maxVal is a constant value acquired from the prior instructions, and the func-
tionality of state sq3Tbl[] is simply to access a 1 × 8 fixed data table from the external
memory. And, the loop number len means the sample size of every speech frame. Here,
the loop number len is required to equal 240 (30 ms) or 160 (20 ms) for iLBC speech codec.
For this so-called simpler but heavily repeated bottleneck, the experimental implemen-
tation will reform it into “Soft Speech Codec” by “Soft DSP” technique, specifically by
the enhanced custom instruction of state sq3Tbl[]. The detailed design methodology is
illustrated as follows.

(a) (b)

Figure 3. (a) Original code segment of start state reconstruction block;
(b) Verilog code of custom instruction of state sq3Tbl[]

At first, the dedicated logic for running the custom instruction of state sq3Tbl[] must
be designed through “Verilog” Hardware Description Language (HDL) as shown in Fig-
ure 3(b). The objective of the dedicated logic state sq3tbl.v in Figure 3(b) is just to
access a 1 × 8 fixed data table rapidly in hardware way. After the connectivity dia-
gram and pin assignment of Nios II processor is ensured to be valid and appropriate
through “SOPC builder” tool, the dedicated logic in Figure 3(b) can be integrated into
Nios II processor core through “SOPC builder” tool. The imported combinational logic
file state sq3tbl.v is rightly the aforementioned dedicated logic for running the custom
instruction of state sq3Tbl[]. Next, it is still necessary to resynthesize Nios II processor
core through “Quartus II” tool and download the updated .sof image file to the embedded
platform through “Quartus II” tool. Afterward, this reformed Nios II hardware platform
has the capability to run the enhanced custom instruction effectively and efficiently.

On the other end, for the software code segment as shown in Figure 4(a), the exper-
imental implementation has to replace the original instruction state sq3Tbl[] with the
enhanced custom instruction ALT CI STATE SQ3TBL() through “Nios II IDE” tool
as highlighted in Figure 4(b). In the highlighted section of software code of Figure
4(b), the variable maxVal is still a constant value acquired from the prior instructions,
and ALT CI STATE SQ3TBL() is created and engaged in driving the dedicated logic



ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.7, NO.6, 2016 1327

(a)

(b)

Figure 4. SW code and execution time of (a) original and (b) soft iLBC
speech decoder

state sq3tbl.v to access a 1 × 8 fixed data table rapidly. Next, “Nios II IDE” tool applies
GNU C Compiler (GCC) to rebuilding the reformed software code of iLBC speech decoder
into .elf executable file and downloads the executable file to the embedded platform. In
short, the HW/SW codesign methodology of “Soft Speech Codec” is expansion of the
hardware core design followed by reformation of the software code design.

5. Experimental Results. In order to analyze and compare the experimental results,
this paper writes a software code behind the code of iLBC speech decoder to count the
processing time of Nios II processor with/without “Soft DSP” technique. The software
code and execution time of the code segment of interest in “original iLBC speech decoder”
and “soft iLBC speech decoder” are shown in Figures 4(a) and 4(b), respectively. The



1328 W.-Y. HUANG AND C. C. HO

experimental results verify that the processing time of Nios II processor with support of
only one custom instruction is about 38 ms shorter than original Nios II processor for
every speech frame’s decoding. So the boosting effect of “Soft Speech Codec” without
extra coprocessor cost and power consumption is dramatic and significant.

6. Conclusions. According to the experimental results of iLBC speech decoder in the
experimental implementation, the processing time of Nios II processor with “Soft DSP”
technique can be decreased by about 38 ms for each 240-sample speech frame’s decoding.
In other words, the “Soft iLBC speech decoder” implementation in the lab example can
decrease the processing time of 38n ms totally when decoding a speech bitstream consist-
ing of n speech frames. Furthermore, it is worth noting that only one custom instruction
is implemented in this case of the experimental implementation, but Nios II processor is
permitted to extend and couple at most 256 unique custom instructions [12]. In the future
research direction, the more bottlenecks that are simpler but heavily repeated are found
out to reform, the better “Soft DSP” technique can improve the speech codec processing
performance of VoIP embedded platform without extra coprocessor cost and power con-
sumption. Besides, against the pure HW technique, “Soft DSP” technique features: 1)
smaller circuit area, 2) lower power consumption, 3) better design flexibility, and 4) richer
feature scalability.

REFERENCES

[1] Wikimedia Foundation, Internet Low Bitrate Codec (iLBC), Wikipedia, https://en.wikipedia.org/
wiki/Internet Low Bitrate Codec, 2015.

[2] M. Menth, A. Binzenhofer and S. Muhleck, Source models for speech traffic revisited, IEEE Trans.
Networking, vol.17, pp.1042-1051, 2009.

[3] K. Seto and T. Ogunfunmi, Scalable speech coding for IP networks: Beyond iLBC, IEEE Trans.
Audio, Speech, Language Processing, vol.21, pp.2337-2345, 2013.

[4] F. Mousavipour and M. J. Khoseavipour, VoIP quality enhancement with wideband extension
method in broadband networks, IEEE Latin America Transactions, vol.10, pp.1190-1194, 2012.

[5] Global IP Sound, iLBC – Designed for the future, White Paper, 2004.
[6] S. Andersen, A. Duric, H. Astrom, R. Hagen, W. Kleijn and J. Linden, Internet Low Bit Rate Codec

(iLBC), IETF RFC 3951, 2004.
[7] V. Dumitriu and L. Kirischian, SoPC self-integration mechanism for seamless architecture adaptation

to stream workload variations, IEEE Trans. Very Large Scale Integration Systems, 2015.
[8] F. A. Escobar, X. Chang and C. Valderrama, Suitability analysis of FPGAs for heterogeneous

platforms in HPC, IEEE Trans. Parallel and Distributed Systems, 2015.
[9] J. Noguera and R. M. Badia, HW/SW codesign techniques for dynamically reconfigurable architec-

tures, IEEE Trans. Very Large Scale Integration Systems, vol.10, pp.399-415, 2002.
[10] P. Biswas and N. D. Dutt, Code size reduction in heterogeneous-connectivity-based DSPs using

instruction set extensions, IEEE Trans. Computers, vol.54, pp.1216-1226, 2005.
[11] A. Lodi, M. Toma, F. Campi, A. Cappelli, R. Canegallo and R. Guerrieri, A VLIW processor

with reconfigurable instruction set for embedded applications, IEEE Journal of Solid-State Circuits,
vol.38, pp.1876-1886, 2003.

[12] Altera, Nios II Custom Instruction User Guide, 2011.


