
ICIC Express Letters
Part B: Applications ICIC International c©2016 ISSN 2185-2766
Volume 7, Number 6, June 2016 pp. 1313–1321

STUDY ON APPLYING BRIGHTNESS FLUOROSCOPY

ON STRENGTHENING ART APPEARANCE FOR 3D GAME

Yung-Piao Chiu1,2,∗, Hung Sun1 and Kai-Tung Liu3

1Department of Digital Media Design
Hwa Hsia University of Technology

No. 111, Gongzhuan Road, Zhonghe District, New Taipei City 23568, Taiwan
∗Corresponding author: frank@cc.hwh.edu.tw; arionsun@cc.hwh.edu.tw

2Department of Technology Management
3Department of Construction Management

Chung Hua University
No. 707, Wufu Road, Sec. 2, Hsinchu 30012, Taiwan

M10116010@chu.edu.tw

Received November 2015; accepted February 2016

Abstract. Taiwanese students prefer using expression styles involving cute cartoon ren-
derings when designing games. This is a universal game art style preference across Asia.
3D game graphics by using preset cartoon shader in Unity 3D engine will look “flat-
tening”. Thus, the game image loses its depth perception. In this study, we referenced
the evolution of perspective and spatial relationships in Western painting. According to
changes in the principles of atmospheric perspective, the lightness perspective effect asso-
ciated with visually highlighting screen subjects was used to design a shader that detects
the Y-axis values of an object’s coordinate system to fill in the gradient hues of vertex
colors. A simulated lighting effect can be achieved by changing the shader of a 3D object
in a game, substantially reducing the map handling workload and improving the sense of
3D segmentation of the characters and environments in the game image.
Keywords: Game art, Chromatics, Lightness perspective, Shader

1. Introduction. The use of cartoon-style 3D game, tends to have a visual flattening,
inadequate depth of the problem. First, we used a 3ds Max plugin to confirm the image
optimization effect. To reduce the workload associated with using shading maps to gen-
erate numerous game objects, a shader was developed for use in the Unity engine. This
is a simple method of improving the adjustment space in the game image and enhancing
the effectiveness of the game’s execution. Furthermore, in addition to determining the
differences in the world coordinates defined in the software program used by the game
developers, the proposed shader distinguishes between two specialized forms, Z-up and Y-
up, to satisfy the requirements of any development environment. In this study, we applied
a traditional lightness perspective painting technique to game characters and objects ren-
dered in a cartoon style. Shades were added to the exteriors of the characters and objects
in the game to ensure a highly detailed depth perception between objects, highlighting
the differences between the characters and the scene and enhancing the quality of the
game images.

2. Problem Statement and Preliminaries.

2.1. Motivation. Digital games are a form of comprehensive artistic expression that in-
tegrates computer, Internet, animation, art, interaction, and music software, hardware,
and media. Large-scale game titles have original and unique worldviews, engaging artis-
tic images, and storylines with various twists. Small games are also fun and captivating.

1313

1314 Y.-P. CHIU, H. SUN AND K.-T. LIU

Pleasant gaming experiences can be ensured by integrating visual image effects and game-
play to immerse gamers. Art plays an irreplaceable role in shaping and producing game
images. It shoulders the key task of visualizing the game world [1].

Because of most students’ preference for Japanese animation [2] and because of the
limitations of three-dimensional (3D) rendering techniques, students typically adopt cute
cartoon styles with a cell shaded sense in artistic expressions when creating graduation
projects (Figure 1). Such student works are often highly saturated and bright with uniform
lighting in their visual expressions. Thus, the degree of separation between the characters
and the scene is insufficient. The resulting images lack a sense of spatial depth.

Figure 1. 3D game involving the use of toon shaders

Figure 2. Initial image effects (left) and grayscale examination (right)

2.2. Toon shader. When Unity is applied to developing game projects, the built-in
Toon-Basic shader [3] is typically used when a cartoon rendering style is required. The
lighting of the scene does not affect this simple cartoon texture shader. It relies on the
light and shade of the drawn model maps to create a sense of 3D depth. Figure 2 shows
an initial image created using the built-in Toon-Basic shader. Although a hand-painted
texture style has been applied to drawing the scenery of this fairy-tale game [4,5], the color
scale observed after converting the image into grayscale by using Photoshop shows that
limited color levels are used in this image. The two ends of the light and dark regions have
no data. Thus, this image has virtually no field depth because each 3D object appears to
be attached to the image like a cutout.

2.3. Atmospheric perspective. During the Renaissance, artist Leonardo da Vinci [6]
developed the theory of atmospheric perspective, which is based on his own observations
[5]. The primary phenomena of atmospheric perspective are detailed as follows.

ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.7, NO.6, 2016 1315

A. Closer objects are darker, whereas farther objects are brighter.
B. Closer objects have greater contrast, whereas farther objects have relatively low

contrast.
C. Closer objects have clearer outlines, whereas farther objects have fuzzier outlines.
D. Closer colored objects have saturated (bright) colors, whereas farther colored objects

have lighter, unsaturated colors. This is because as the distance changes, in addition to
the differences in light and shade, the saturation of the objects’ colors also varies.

To apply the concept of atmospheric perspective, environmental fog can be added
to the game scene in the Unity engine. This simulates the atmospheric perspective of
distant objects. Fog masking produces a textured perspective effect that creates a sense
of distance and atmosphere in the perspective image (Figure 3). However, virtually no
clear improvement is produced in the visual focus area of the character nearest to the
player because of the short distance between the objects.

2.4. Lightness perspective. During the conceptual stage of designing characters, il-
lustrators commonly apply shading and color gradients by using compressed lightness
perspective techniques to ensuring a clearer physical perception of the objects, enabling
the distinction of the characters from the background. The multiplayer real-time strategy
game Dota 2 tests the use of both the eyes and hands. In the Dota 2 Character Art Guide
[7], the concept art on Page 3 and Pages 11-13 entails using shading to inspect the color
levels of the characters, enhancing the clarity and prominence of the game characters
against the scenery and meeting the visual requirements of the game.

Figure 4 depicts the effect schematic of Martinez Macro GradientMap.mcr [8], a plugin
for 3ds Max. A new black-and-white gradient map can be generated automatically on
the existing UVW map according to bottom to top features of the character. Image
processing software such as Photoshop can then be used to superimpose this shading map
on the original diffuse map, resulting in a map with lightness perspective effects. When
this superimposition process is applied to game effects as shown in Figure 5, using new
maps can enable rendering more prominent characters after the characters and objects
are processed. A greater sense of layering is observed in the image.

Figure 3. Image effect of the
scene with added fog

Figure 4. Usage schematic
of the 3ds Max plugin

3. Methods.

3.1. Shader. Shaders in game engines [9] and materials in 3D animation software gen-
erally describe the textures of the 3D models presented in the images. However, shaders
and materials are not precisely the same. Shaders primarily refer to algorithm fragments
with programmable pipelines. Shaders are further divided into vertex shaders and pixel
shaders [10]. Numerous coordinate points define 3D models. Such points are called ver-
tices. Vertex shaders can be used to define the shape of an object model. Because such a
model is composed of points, changing the points changes the shape. Pixels can be rep-
resented in various colors. Numerous pixels constitute the content on computer displays.

1316 Y.-P. CHIU, H. SUN AND K.-T. LIU

Figure 5. Game image after superimposing gradient levels on the maps
(left) and close-up comparison before and after use (right)

Pixel shaders serve as the fill colors after the vertices are completely converted. These
filling algorithms are directed at every pixel on the screen. Thus, they are denoted as
pixel shaders.

In summary, graphics rendering is an execution process similar to an assembly line.
Vertex shaders construct 3D models, and the output values of the vertex shaders are
subsequently used as input for the pixel shaders to produce visible images. Each shader
must at least go through a vertex shader and a pixel shader [11].

3.2. World Pos. shader. When an overlooking, third-person game perspective is adopt-
ed, lightness perspective is applied to enhancing the image effects. The initial conception
is employed to fill the vertex colors of the model by using the black-and-white gradient
from the bottom to the top vertices of the character model. The vertex colors are combined
with diffuse blending to produce brightness contrast effects. In Unity, the results obtained
using the Strumpy Shader Editor [12] series are not ideal (Figure 6). With the exception
of the render pass, the vertex color does not generate transitional colors, indicating that
the rendering process is erroneous.

Figure 6. Initial conception and failed shader

Pixel shaders are used instead. During the final coloring stage, gradient shading is
superimposed onto the relative positions of the models. In this process, the coordinates
of the vertices are first transformed from object coordinates to world coordinates before
calculation. The coordinates of the heights of the actual points’ positions are transformed
from object to world coordinates to obtain height values. The principle is to divide the Y
height (in world coordinates) of the model vertices by the assumed model height to obtain
height ratio values. The height ratios are then used as the UV axes of the gradient map
to produce a vertical gradient effect. The vertex and pixel algorithms used are shown in
Table 1.

ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.7, NO.6, 2016 1317

Table 1. World Pos. shader pixel calculation formula

Figure 7. Image comparison of the World Pos. shader and the gradient map

Figure 7 illustrates a comparison of the images produced using the World Pos. shader
and the Martinez Macro GradientMap.mcr plugin in the game. The two images are vir-
tually identical. The World Pos. shader also provides height values and gradient color
control parameters. Minor adjustments can be conducted at any time in Unity. In addi-
tion, color mixing effects can be used in the scene atmosphere.

During actual character movement in the scene of the running game, the gradient
shading associated with the World Pos. shader exhibits limitations in height range and
direction when the characters jump, climb to high points, or lie horizontally. Because
of the shader floor height specified by the program (GroundYPos), when the character
models depart from the world coordinate point Y = 0, the gradient starting point also
changes and does not meet expectations (Table 1).

The amended operations of the script (Table 2) can be used to calculate the height of
the surface on which objects are located at all times to reset the coordinate determination
value and resolve this height perception problem.

After the height specified in the additional script is revised, the character height problem
can be resolved (Figure 8). However, the state of the object when changing axes cannot
be managed. In addition, when the revised surface height script is used, each model must
execute the specified script individually. It increases the number of drawcalls for static
models, such as the existence of numerous trees and rocks sharing a single material. This
is a drag on execution performance.

1318 Y.-P. CHIU, H. SUN AND K.-T. LIU

Table 2. Revised perception script for surface height

Figure 8. Results of script revision on the World Pos. shader

Table 3. Vertex and pixel calculation formulae for the Local-Z shader

4. Main Results.

4.1. Local-Z shader. When 3ds Max is used to create a 3D character, the character
model output to Unity is still Z-up [13]. The position of the model’s pivot is used as
the low point to adjust the model’s height. The corresponding operation (Table 3) is
then used to complete a Local-Z shader without lightness perspective errors associated
with the height and rotational state. Figure 9 depicts the results obtained after applying

ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.7, NO.6, 2016 1319

Figure 9. Comparison of the effects of the unrevised World Pos. shader
and the Local-Z shader

Figure 10. Comparison of the performance of the double-sided toon
shader and the Local-Z shader

this shader to the game. The character model obtained using the Local-Z shader is
fundamentally identical to that on the ground obtained using the World Pos. shader
without script revision. However, on high platforms, the model maintains its original
lightness perspective performance when the Local-Z shader is used.

4.2. Performance testing. This section presents a comparison of the performance of the
double-sided toon shader with that of the Local-Z shader. Lighting does not influence the
double-sided toon shader used originally, whereas it does affect the Local-Z shader. The
models’ surfaces generate specular reflections, enhancing their clarity and 3D resolution.
However, the triangles and vertices calculated increase exponentially. The Unity status
bar showed that the Local-Z shader exhibited slightly higher frames per second compared
with the double-sided toon shader. This indicates that the image improvements do not
influence the performance, and instead increase it slightly. Unity 5 applies batch process-
ing on skinned mesh renderers, thus improving performance when large numbers of skin
models are used (Figure 10).

4.3. Final version. Not all models are suited for pivots set to the (0, 0, 0) position.
Therefore, additional corresponding pivot positions can be added. For example, the pivot
can be located at the actual center of a model, enabling the adjustment of height dif-
ferences and improving the flexibility of the operating parameters. Table 4 shows the
optimized code. In other animation software involving a Y-up coordinate system similar
to that of Unity, such as Maya, XSI, and Cinema4D, the code is slightly modified to the
Local-Y shader used by the corresponding Y-up model. Figure 11 illustrates these effects.

1320 Y.-P. CHIU, H. SUN AND K.-T. LIU

Table 4. Optimized shaders and core code

Local-Z used for Z-up models Local-Y used for Y-up models
float3 pos = v.vertex.xyz; float3 pos = v.vertex.xyz;

(pos.z + HeightOffset)/ Height; (pos.y + HeightOffset)/ Height;

Figure 11. Corresponding shaders for various softwares, such as 3ds Max
and Maya

5. Conclusions. The atmospheric perspective is related to physical phenomena. Be-
cause of the effects of the atmosphere on color brightness and saturation, it makes dis-
tance objects show lighter and more faded and nearby objects clearer. In this study, we
used shaders to strengthen this effect in game images. Lightness changes were added to
achieve greater depth in the images. The shaders include tuning parameters for manu-
ally manipulating lightness and saturation contrast values according to the atmospheric
requirements of the scene to enhance the lightness perspective effect in games rendered
in cartoon style [14].

Among animation software used to create 3D game model elements, some programs,
such as 3ds Max adopt the Z-up world coordinate system, whereas others, such as Maya,
adopt the Y-up world coordinate system. In this study, we created two sets of shaders
corresponding to Z-up and Y-up models to meet the requirements of different development
environments. These shaders are provided for student use. They can be revised according
to project requirements to provide precise adjustments for art. For example, map control
vignetting effects or map flow control can be added. The use of the current versions can
reduce workloads in 3D games or 3D animation, accelerating the operations of graphics
processor units and improving performance.

In the future, research will be based on individual needs, according to project require-
ments to provide precise adjustments for art. For example, map control vignetting effects
or map flow control can be added, to create a magical and sci-fi effect. Further develop-
ment includes watercolor or charcoal style shaders.

REFERENCES

[1] J. S. Liu, The Application of Art in the Production of Game Numerical Control Technology, Suzhou
Art & Design Technology Institute, Art Education, vol.11, 2014.

[2] Z. G. Zhang, Art Design in Massively Multiplayer Online Role-Playing Games, Master Thesis, China
Central Academy of Fine Arts, 2012.

[3] http://wiki.unity3d.com/index.php/Shaders#General 2.
[4] Y. C. Cheng, Game Scene Design with Hand-Painted Texture Style, Master’s Thesis, National Taipei

University of Education, 2014.
[5] C. C. Lai, Color Psychology in Design: Color Imagery and Culture, Visual Communication, 2003.
[6] http://vr.theatre.ntu.edu.tw/fineart/painter-wt/davinci/davinci.htm.
[7] Dota 2 Character Art Guide, http://media.steampowered.com/apps/dota2/workshop/Dota2Charac-

terArtGuide.pdf.
[8] 3ds Max Plugin, https://dl.dropboxusercontent.com/u/2904948/MaxScript/Martinez Macro Gradi-

entMap.mcr.
[9] http://www.dotblogs.com.tw/sonic10690/archive/2009/01/06/6650.aspx.

ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.7, NO.6, 2016 1321

[10] Kenny Lammers, Unity Shaders and Effects Cook Book, PACKT Publishing, 2013.
[11] http://blog.xuite.net/laishiekai/studio/22146507-Shader%E9%81%8B%E4%BD%9C%E6%B5%81%

E7%A8%8B%E7%9A%84%E5%88%9D%E5%BF%83%E5%BE%97.
[12] Strumpy Shader Editor, http://forum.unity3d.com/threads/56180-Strumpy-Shader-Editor-4.0a-

Massive-Improvements.
[13] Autodesk 3dsMax Online Help, http://help.autodesk.com/view/3DSMAX/2015/ENU/?guid=GUID-

B98414B9-4F28-45F4-A1F4-9DA994548ED9.
[14] X. Zhang, K. L. Chan and M. Constable, Atmospheric perspective effect enhancement of landscape

photographs through depth-aware contrast manipulation, IEEE Transactions on Multimedia, vol.16,
no.3, pp.653-667, 2014.

[15] I. Condry, The Soul of Anime: Collaborative Creativity and Japan’s Media Success Story, Duke
University Press Books Publishing, 2013.

[16] L. Goldmann, T. Ebrahimi, P. Lebreton and A. Raake, Towards a descriptive depth index for 3D
content: Measuring perspective depth cues, International Workshop on Video Processing & Quality
Metrics for Consumer Electronics, 2012.

[17] https://cg2010studio.wordpress.com/2011/06/29/shader/.
[18] OpenGL Rendering Pipeline, http://www.opentk.com/node/1342.
[19] C.-H. Kao, User-Centered Design for Character in Vedio Game, Department of Industrial Engineer-

ing and Management, National Chiao Tung University, 2008.
[20] A. M. Wu, D. Xu, H. X. Wang and J. Wu, Object size constancy calculations based on visual psy-

chology, Electronic Journal of the Institute of Computer Science, vol.34, Beijing Jiaotong University,
2006.

[21] H.-W. Tu, Extravagant and Changeable Color – Experimental Creation Description by Hung-Wei
Tu, Graduate Institute and Department of Visual and Media Arts, Nanhua University, 2011.

