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Abstract. This paper investigates the robust stabilization problem for a class of net-
worked control systems with time-varying delays, time-varying sampling intervals and
nonlinearity. The nonlinear perturbation of the system is time-varying and satisfies qua-
dratic constraints. The network-induced delays and sampling intervals are time-varying
and bounded. By using an input delay approach, the network induced delays, sampling
intervals and nonlinear perturbation are presented in one framework. Using Lyapunov
functional approach and introducing relax variables technology, the stability condition
of the systems is proposed, which describes the maximum allowable nonlinear bound, the
maximum allowable sampling intervals and the maximum allowable network delay bound.
By using the cone complementary liberalization (CCL) algorithm and linear matrix in-
equalities (LMIs), the feedback gain of the robust state feedback controller is obtained.
An example demonstrates the effectiveness of the proposed methods.
Keywords: Networked control systems, Nonlinearity, Time-varying delays, Time-vary-
ing sampling

1. Introduction. Networked control system (NCS) integrates communication network
with control system to attain low cost, simple installation, easy maintenance and high
flexibility. However, NCSs’ challenges such as time-varying network-induced delays, time-
varying sampling intervals or nonlinear disturbances in transmission channel bring in-
fluences on the stability and the performance of the NCS. Recently, some works have
discussed the control problem of NCSs with delays and uniform sampling intervals [1,2].
In a networked control system, all signals are sampled by a sampler, and the sampling
rate for each signal may be varying from sample to sample according to actual situations.
The kind of sampling intervals is called as time-varying sampling intervals or nonuni-
form sampling intervals. Over the past decades, NCSs with nonuniform sampling have
been studied extensively by many researchers using sampled-data control theory [3,4]. A
series of works on stability and control problems for the sampled-data control systems
with variable sampling has been investigated [5,6]. However, these results are hard to be
applied to NCS. Presently, [7] and [8] respectively studied the control problem of NCSs
with nonuniform sampling. Nevertheless, these results are not appropriate for networked
control systems with nonlinear disturbance.
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To the best of the authors’ knowledge, most of the existing literature does not consider
the case that time-varying delays, nonlinearity and nonuniform sampling simultaneously
exist in the NCSs, and their effects on the NCSs’ stability. Consequently, it is necessary
to conduct an analysis on the network delays, sampling intervals and nonlinearity, and
understand how much effects these three factors make on the overall systems. This paper
will take an alternative look at robust stabilization of the NCS subject to time-varying de-
lays, time-varying sampling intervals and nonlinear constraints. By using the input delay
approach, the effects of network-induced delays and nonlinear disturbance and sampling
intervals are included in the NCS model. By using the Lyapunov functional approach,
cone complementary liberalization algorithm and the technology of inducing relax matrix
variables, a sufficient criterion ensuring the NCS to be stable is derived. Furthermore,
the controller design conditions are obtained which are dependent on sampling interval
bounds, network-induced delay bounds and nonlinear bound.

The rest of the paper is organized as follows. In Section 2, we first introduce the charac-
teristics of the NCS with nonlinearity, then develop the model of the NCS to describe both
the nonuniform sampling and the nonlinearity in a unified framework. Section 3 deals
with the stability analysis and controller design of the NCS, respectively. The proposed
approach is illustrated in Section 4 through a numerical example. Section 5 concludes the
paper.

2. Problem Formulation. We consider an NCS with nonlinearity. The plant is a contin-
uous-time linear time-invariant system whose state-space representation is given by

.
x(t) = Ax(t) + Bu(t) + h(t, x(t)) (1)

where x(t) ∈ Rn is the system state, and u(t) ∈ Rp is the control input. A, B are some
constant matrices of appropriate dimensions, h(t, x(t)) : [0,∞) × Rn → Rn represents
nonlinear uncertainties of the plant to be controlled. Assume that h(t, x(t)) is a piecewise-
continuous nonlinear function in both arguments t and x, and satisfies the following
quadratic constraint condition for ∀t ≥ 0

hT (t, x(t))h(t, x(t)) ≤ α2xT (t)HT Hx(t) (2)

where α > 0 is the bounding parameter on the uncertain function h(t, x(t)) and H is a
constant matrix. Note that for any given H, Inequality (2) defines a class of piecewise-
continuous functions

Hα =
{
h : Rn+1 → Rn|hT h ≤ α2xT HT Hx in the domains of continuity

}
(3)

The class Hα is comprised of functions that satisfy h(t, 0) = 0 in their domains of conti-
nuity, and x = 0 is an equilibrium of system (1).

Define the zero-order hold control action

uc(t) = ud(sk) = Kx(sk), sk ≤ t < sk+1 (4)

where K is the feedback gain to be determined. ud is a discrete-time control signal and
the time sk is the sampling instant satisfying 0 = s0 < s1 < · · · < sk < · · · . The sampling
interval Tk = sk+1 − sk may vary but it is bounded. In this paper, it is assumed that Tk

is time-varying and its lower bound and upper bound are known:

0 < Tm ≤ Tk ≤ TM (5)

where Tm and TM depend on networked types. Modeling of continuous-time systems
with discrete-time control inputs was investigated by [5]. The digital control law may be
represented as follows by using input delay approach:

uc(t) = Kx(sk) = Kx(t − (t − sk)) = Kx(t − τ(t)), sk ≤ t < sk+1 (6)

where τ(t) = t − sk is piecewise linear with the derivative τ̇(t) = 1 for t ̸= sk, and
0 ≤ τ(t) ≤ TM , ∀t ≥ s0. In NCSs, the control signals from the sampler at sk take δk
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time units to reach the actuator, then u(t) = uc(t − δk) = Kx(t − δk − τ(t − δk)). In
the following, d(t) = τ(t − δk) + δk, so, sk = t − d(t) for sk + δk ≤ t ≤ sk+1 + δk+1.
Note that the variable sampling interval and networked delay are integrated in a single
delay d(t). Network communication delay δk is naturally assumed as δm ≤ δk ≤ δM . The
piecewise-constant control law (6) can be represented as a continuous-time controller with
a time-varying piecewise continuous delay:

u(t) = Kx(t − d(t)), sk + δk ≤ t < sk+1 + δk+1 (7)

where d(t) = t − sk, is piecewise linear with the derivative ḋ(t) = 1 for t ̸= sk + δk, and

δm ≤ d(t) ≤ TM + δM (8)

The case considered in this paper is that network communication delay is smaller than
sampling interval, and thus we have δm ≤ δM ≤ Tm ≤ TM . Let δM/Tm ≤ ρ ≤ 1, then we
can write (8) as

δm ≤ d(t) ≤ TM +
δM + ρTm

2
= σ (9)

We call σ the maximum allowable equivalent delay bound (MAEDB). Combining the
controller (7) into the NCS (1), we can obtain the closed-loop networked control system:

ẋ(t) =Ax(t) + BKx(t − d(t)) + h(t, x(t)), sk + δk ≤ t < sk+1 + δk+1 (10)

3. Main Results.

Theorem 3.1. For given scalars δm, δM , Tm, TM (0 ≤ δm ≤ δM ≤ Tm ≤ TM), α > 0,
0 ≤ γ < 1, ε > 0, δM/Tm ≤ ρ ≤ 1, and a matrix K, the closed-loop NCS (10) is
asymptotically stable if there exist matrices P = P T > 0, Qi = Qi

T > 0 (i = 1, 2, 3),
Zj = Zj

T > 0 (j = 1, 2, 3), and N , T , M , R, E, S of appropriate deimensions, such that[
Γ GT

H

∗ − 1
ε∗α2 I

]
< 0 (11)

where

Γ =



Γ1 N T M R E S Ac
T Z1 Ac

T Z2 Ac
T Z3

∗ − 1
γσ̄

Z1 0 0 0 0 0 0 0 0

∗ ∗ − 1
σ̄−γσ

Z1 0 0 0 0 0 0 0

∗ ∗ ∗ − 1
σ
Z1 0 0 0 0 0 0

∗ ∗ ∗ ∗ − 1
σ
Z2 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ − 1
σ
Z2 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ − 1
σ
Z3 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ − 1
σ̄
Z1 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ − 1
σ̄
Z2 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ − 1
σ̄
Z3


(12)

Γ1 = Γ11 + Γ12 + Γ12
T

Γ12 = [ N + S M − E + R − T E −M − R − S T − N 0 ]
(13)

Γ11 =


PA + AT P + Q1 + Q2 + Q3 PBK 0 0 0 P

∗ 0 0 0 0 0
∗ ∗ −Q1 0 0 0
∗ ∗ ∗ −Q2 0 0
∗ ∗ ∗ ∗ −Q3(1 − γ) 0
∗ ∗ ∗ ∗ ∗ −εI
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Ac = [ A BK 0 0 0 I ], GH = [ H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ]

σ = TM +
δM + ρTm

2
− δm, σ̄ = TM +

δM + ρTm

2
, σ = δm (14)

Proof: Consider the following piecewise Lyapunov functional:

V (t) = xT (t)Px(t) +

∫ t

t−τm

xT (s)Q1x(s)ds +

∫ t

t−
(
TM+

τM +ρTm
2

) xT (s)Q2x(s)ds

+

∫ t

t−αd(t)

xT (s)Q3x(s)ds +

∫ 0

−
(
TM+

τM +ρTm
2

)
∫ t

t+β

ẋT (s)Z1ẋ(s)dsdβ (15)

+

∫ −τm

−
(
TM+

τM +ρTm
2

)
∫ t

t+β

ẋT (s)Z2ẋ(s)dsdβ +

∫ 0

−
(
TM+

τM +ρTm
2

)
∫ t

t+β

ẋT (s)Z3ẋ(s)dsdβ

P = P T > 0, Qm = Qm
T > 0 (m = 1, 2, 3), Zj = Zj

T > 0 (j = 1, 2, 3).
Obviously, V (t) is discontinuous. Note that V (t) is continuous and positive except the

instants sk + δk. Therefore, we consider the following two cases.
1). For sk +δk < t < sk+1 + δk+1, calculating the derivative of V (t) with respect to t along
the solutions of the system (10), and denoting h1 = τm, h2 = TM + τM+ρTm

2
, it yields that

V̇ (t) ≤ 2xT (t)P (Ax(t) + BKx(t − d(t)) + h(t, x(t))) +
3∑

i=1

xT (t)Qix(t)

−xT (t − h1)Q1x(t − h1) − xT (t − h2)Q2x(t − h2)

− (1 − γ)xT (t − γd(t))Q3x(t − γd(t)) + (Ax(t) + BKx(t − d(t))

+ h(t, x(t)))T (h2Z1 + (h2 − h1)Z2 + h2Z3)(Ax(t) + BKx(t − d(t)) + h(t, x(t)))

−
∫ t

t−γd(t)

ẋT (s)Z1ẋ(s)ds −
∫ t−γd(t)

t−d(t)

ẋT (s)Z1ẋ(s)ds −
∫ t−d(t)

t−h2

ẋT (s)Z1ẋ(s)ds

−
∫ t−d(t)

t−h2

ẋT (s)Z2ẋ(s)ds −
∫ t−h1

t−d(t)

ẋT (s)Z2ẋ(s)ds −
∫ t

t−h2

ẋT (s)Z3ẋ(s)ds

+ 2ζT (t)N

[
x(t) − x(t − γd(t)) −

∫ t

t−γd(t)

ẋ(s)ds

]
+ 2ζT (t)T

[
x(t − γd(t))

−x(t − d(t)) −
∫ t−γd(t)

t−d(t)

ẋ(s)ds

]
+ 2ζT (t)M

[
x(t − d(t)) − x(t − h2)

−
∫ t−d(t)

t−h2

ẋ(s)ds

]
+ 2ζT (t)R

[
x(t − d(t)) − x(t − h2) −

∫ t−d(t)

t−h2

ẋ(s)ds

]

+ 2ζT (t)E

[
x(t − h1) − x(t − d(t)) −

∫ t−h1

t−d(t)

ẋ(s)ds

]
+ 2ζT (t)S

[
x(t) − x(t − h2) −

∫ t

t−h2

ẋ(s)ds

]
≤ ζT (t)

(
Γ̃1+γh2NZ−1

1 NT +(1−γ)h2TZ−1
1 T T + h12MZ1

−1MT + h12RZ2
−1RT

+ h12EZ−1
2 ET + h12SZ3

−1ST + ÃT
c UÃc

)
ζ(t) + εhT (t, x(t))h(t, x(t))

−
∫ t

t−γd(t)

H1Z
−1
1 H1

T ds −
∫ t−γd(t)

t−d(t)

H2Z
−1
1 H2

T ds −
∫ t−d(t)

t−h2

H3Z1
−1H3

T ds
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−
∫ t−d(t)

t−h2

H4Z2
−1H4

T ds −
∫ t−h1

t−d(t)

H5Z
−1
2 H5

T ds −
∫ t

t−h2

H6Z
−1
3 H6

T ds

where

H1 = ζT (t)N + ẋT (s)Z1, H2 = ζT (t)T + ẋT (s)Z1, H3 = ζT (t)M + ẋT (s)Z1

H4 = ζT (t)R + ẋT (s)Z2, H5 = ζT (t)E + ẋT (s)Z2, H6 = ζT (t)S + ẋT (s)Z3

ζ(t)=
[

xT (t) xT (t−d(t)) xT (t−τm) xT

(
t−

(
TM +

τM +ρTm

2

))
xT (t−γd(t)) h(t, x(t))

]T

By the Schur complements, combine (16) to obtain V̇ (t) < 0 for all sk + δk < t <
sk+1 + δk+1.

Γ̃ =



Γ̃1 N T M R E S Ãc
T
Z1 Ãc

T
Z2 Ãc

T
Z3 GT

H

∗ − 1
γσ̄

Z1 0 0 0 0 0 0 0 0 0

∗ ∗ − 1
σ̄−γσ

Z1 0 0 0 0 0 0 0 0

∗ ∗ ∗ − 1
σ
Z1 0 0 0 0 0 0 0

∗ ∗ ∗ ∗ − 1
σ
Z2 0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ − 1
σ
Z2 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ − 1
σ
Z3 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ − 1
σ̄
Z1 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ − 1
σ̄
Z2 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ − 1
σ̄
Z3 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ − 1
ε∗α2 I


< 0

(16)
where

Γ̃1 = Γ̃11 + Γ12 + Γ12
T

Γ̃11 =


PA + AT P + Q1 + Q2 + Q3 PBK 0 0 0 P

∗ 0 0 0 0 0
∗ ∗ −Q1 0 0 0
∗ ∗ ∗ −Q2 0 0
∗ ∗ ∗ ∗ −Q3(1 − α) 0
∗ ∗ ∗ ∗ ∗ −εI


Ãc =

[
A BK 0 0 0 I

]
2). Note that the value of the state x(t) before and after the instants sk + δk remains
unchanged. For d(t), when t = sk + δk, d(t) = δk; t = (sk + δk)

−, d(t) = sk + δk − sk−1, so,

the value of the fourth term
∫ t

t−αd(t)
xT (s)Q3x(s)ds in Lyapunov functional (15) does not

increase at the instants sk+δk. It shows that Lyapunov functional (15) does not increase at
the instants sk +δk. Thus, for t ∈ [ sk + δk, sk+1 + δk+1 ), we have V (t)−V (sk +δk) ≤ 0.
Since limk→∞tk = ∞, we have

∪∞
k=0 [ sk + δk sk+1 + δk+1 ) = [ t0, ∞ ). It follows that

V (t) − V (t0) ≤ 0. It shows that V (t) is decreased. This completes the proof.

Theorem 3.2. For given scalars δm, δM , Tm, TM (0 ≤ δm ≤ δM ≤ Tm ≤ TM), α > 0,
0 ≤ γ < 1, ε > 0, δM/Tm ≤ ρ ≤ 1, the closed-loop NCS (10) is asymptotically stable
if there exist matrices X = XT > 0, Qi = Qi

T > 0 (i = 1, 2, 3), Z̃j = Z̃T
j > 0,

ZjL = ZjL
T > 0 (j = 1, 2, 3), Rn = Rn

T > 0, RnL = RnL
T > 0 (n = 1, 2, 3), and Ñ , T̃ ,

M̃ , R̃, Ẽ, S̃ of appropriate deimensions, such that[
Ξ H̃
∗ − 1

ε∗α2 I

]
< 0 (17)
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−R1L XL

∗ −Z1L

]
≤ 0,

[
−R2L XL

∗ −Z2L

]
≤ 0,

[
−R3L XL

∗ −Z3L

]
≤ 0 (18)

R1LR1 = I, R2LR2 = I, R3LR3 = I, XXL = I, Z1LZ̃1 = I, Z2LZ̃2 = I, Z3LZ̃3 = I (19)

where

Ξ =



Ξ1 Ñ T̃ M̃ R̃ Ẽ S̃ AL
T AL

T AL
T

∗ − 1
γσ̄

Z̃1 0 0 0 0 0 0 0 0

∗ ∗ − 1
σ̄−γσ

Z̃1 0 0 0 0 0 0 0

∗ ∗ ∗ − 1
σ
Z̃1 0 0 0 0 0 0

∗ ∗ ∗ ∗ − 1
σ
Z̃2 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ − 1
σ
Z̃2 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ − 1
σ
Z̃3 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ − 1
σ̄
R1 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ − 1
σ̄
R2 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ − 1
σ̄
R3


(20)

Ξ1 = Ξ11 + Ξ12 + Ξ12
T

Ξ11 =


AX + XAT + Q̃1 + Q̃2 + Q̃3 BY 0 0 0 I

∗ 0 0 0 0 0

∗ ∗ −Q̃1 0 0 0

∗ ∗ ∗ −Q̃2 0 0

∗ ∗ ∗ ∗ −Q̃3(1 − α) 0
∗ ∗ ∗ ∗ ∗ −εI


Ξ12 =

[
Ñ + S̃ M̃ + R̃ − Ẽ − T̃ Ẽ −M̃−R̃−S̃ T̃ − Ñ

]
(21)

AL =
[

AXT BY 0 0 0 I
]T

, H̃ =
[

XHT 0 0 0 0 0 0 0 0 0 0 0 0
]

σ = TM +
δM + ρTm

2
− δm, σ̄ = TM +

δM + ρTm

2
, σ = δm (22)

σ, σ, and σ̄ are given in (22). In this case, the state-feedback gain is given by K = Y X−1.

Now using the modified cone complementary linearisation algorithm [9], the conditions
in Theorem 3.2 are solvable. Although it is still not possible to always find the global
optimal solution, the proposed nonlinear minimization problem is easier to solve than the
original nonconvex feasibility problem.

4. Example. In the following, an example will be given to illustrate the effectiveness and
applicability of the proposed approaches. Consider the following NCS with nonlinearity:

ẋ(t) =

[
1 1
0 0.99

]
x(t) +

[
0
10

]
u(t) + h(t, x(t)) (23)

with H =

[
0
1

]
.

Case 1. We first do not consider the effect of variable sampling; for this case, it means
that 0 < d(t) < σ̄. By using the method provided in Theorem 3.2, we can find the upper
bound of d(t) is 0.30, while [10] is 0.2838, and [11] is 0.2509. It shows that we can provide
much larger upper bound of delay. In the meanwhile, we can obtain nonlinear bound
αmax = 0.1703. Compared with the result αmax = 0.0013 in [11] and αmax = 0.1636 in [10],
our result in this paper allows a larger nonlinear bound. From this example, it can be
seen that the method proposed in this paper is more effective than that in [10] and [11].
Case 2. We consider the settings with nonuniform sampling. Choosing the bounds of
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Figure 1. State response of the NCS with two transmission deadbands

Figure 2. Control input of the NCS with two transmission deadbands

the network-induced delays are δm = 0.02s and δM = 0.05s, the bounds of sampling
intervals are Tm = 0.10s and TM = 0.3s. By Theorem 3.2, one can obtain the following

solution: X = 104 ∗
[

1.0702 −0.9496
−0.9496 1.5962

]
, Y = 103 ∗

[
0.6932 −2.6004

]
. Hence, the

state feedback controller gain K =
[
−0.1690 −0.2634

]
. Figure 1 and Figure 2 show

the state response and control input of the closed-loop systems, respectively, where the
initial state of the NCS is x0 = [1 − 1.5]T . It can be seen that the closed-loop NCS is
asymptotically stable with above obtained control gain K in Theorem 3.2. These have
shown the effectiveness of controller design method proposed in this paper.

5. Conclusions. This paper studies the stability and stabilization problem for networked
control systems subject to time-varying delays, time-varying sampling intervals, and non-
linear disturbances. By using the input delay approach, the network delays, sampling
intervals and nonlinear disturbances are combined as a unified framework of the NCS
model. By choosing a Lyapunov functional with discontinuity, a less conservative stabil-
ity analysis condition of such NCS is derived. Moreover, by using the CCL algorithm, we
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give robust controller design conditions which are associated with the bounds of network-
induced delays, the bounds of sampling intervals and the bound of nonlinearity. Finally,
an example is used to show the advantages of the proposed methods. Our future work
will mainly focus on co-design strategy for nonlinear networked control systems based on
variable sampling method. We will explore the relations of the sampling intervals and the
systems performance.
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