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Abstract. This paper deals with the decentralized control problem for a class of switched
Takagi-Sugeno (T-S) fuzzy interconnected system with actuator saturation. By using
parallel distributed compensation (PDC) approach, a state feedback decentralized fuzzy
controller is developed. The decentralized switching law and the stabilization sufficient
conditions are proposed and proved based on the multiple Lyapunov function theory, which
are formulated as linear matrix inequalities (LMIs). It is proved that proposed control
scheme can guarantee that whole closed-loop system is asymptotically stable. A numerical
example is given to illustrate the effectiveness of the proposed control method.
Keywords: Switched systems, Fuzzy T-S interconnected system, Actuator saturation,
Decentralized control

1. Introduction. Takagi-Sugeno (T-S) fuzzy model is a well known universal approxima-
tor, most complex nonlinear systems can be satisfactorily represented as T-S systems, and
fuzzy control of nonlinear interconnected systems based on T-S fuzzy model has attracted
great attention in recent years [1]. Especially, the decentralized control as an effective con-
trol approach has been extensively studied for the nonlinear interconnected systems, and
some useful results have been obtained [2-4]. The works in [3] proposed a state feedback
decentralized control approach for the T-S interconnected systems; [4] investigated a de-
centralized H∞ control design for nonlinear interconnected systems via T-S fuzzy models.
However, the above mentioned results are only suitable for the non-switched nonlinear
interconnected systems, instead of the switched nonlinear interconnected systems.

Switched systems belong to a special class of hybrid systems since they can provide a
valid modeling and control approach for many physical systems. In general, a switched
system composes a family of continuous-time or discrete-time subsystems and a logical
rule that orchestrates the switching between them. Recently the control design and sta-
bility analysis for switched fuzzy T-S systems has attracted more and more attention,
see for example [5-8] and references therein. The works in [5,6] developed the dynamic
output feedback H∞ control problems for a class of continuous-time and discrete-time T-S
fuzzy systems by using switching fuzzy controller. [7] proposed a switched state feedback
control design method for a class of switched fuzzy systems; the authors in [8] investigated
the exponential stability and asynchronous stabilization problems for a family of switched
nonlinear systems based on a piecewise Lyapunov-like functions and minimum dwell time
method, and relaxed stability conditions are developed in [9]. In addition, the aforemen-
tioned results do not consider the effect of the actuator saturation, actuator saturation is
unavoidable in practical systems, and it can reduce the performance of a control system
and some times even leads to the unsteadiness of the control systems [10-12]. To the best
of our knowledge, there are no results on the switched T-S fuzzy interconnected systems
with actuator saturation, which motivates us for this study.
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In this paper, we focus on the decentralized control problem for switched T-S fuzzy
interconnected system with actuator saturation. Utilizing the PDC approach, a state
feedback decentralized controller is developed. The decentralized switching law and suf-
ficient conditions of ensuring the system stability are given by using multiple Lyapunov
function method and LMIs. It is shown that the proposed decentralized control approach
can guarantee the closed-loop system with actuator saturation is asymptotically stable.

2. System Description. Consider a fuzzy interconnected system composed of N inter-
connected subsystems Ml, l = 1, 2, . . . , N . The lth switched subsystem Ml is described
as follows:

Rule: IF zl1(t) is M l
σli1

, zl2(t) is M l
σli2

, . . ., zlp(t) is M l
σlip

, then

ẋl(t) = Al
σli

xl(t) + Bl
σli

sat (uσli(t)) +
N∑

p=1, p ̸=l

Rl
pσli

xp(t) (1)

where zl(t) = [zl1(t), zl2(t), . . . , zlp(t)] are the premise variables, and M l
σli1

, · · · ,M l
σlip

are
the fuzzy sets. σl ∈ Ml = {1, 2, . . . ,ml} is a piecewise constant function, which is called
switching signal, Al

σli
(t) and Bl

σli
(t) are known constant matrices with appropriate di-

mensions, Rl
pσli

xp(t) is the nonlinear interconnection between the lth and pth subsystems.
xl(t) ∈ Rn is the state variable, sat(uσli(t)) ∈ Rm is the control input with actuator
saturation, which is defined as [11]

sat(uσli) =
[
sat

(
u1

σli

)
, sat

(
u2

σli

)
, . . . , sat

(
um

σli

)]T

where
sat

(
uj

σli

)
= sgn

(
uj

σli

)
min

{
1,

∣∣uj
σli

∣∣} , j ∈ {1, 2, . . . , m}
The overall switched fuzzy systems are inferred as follows

ẋl(t) =

rσl∑
i=1

µl
σli

(z(t))

{
Al

σli
xl(t) + Bl

σli
sat(uσli(t)) +

N∑
p=1, p ̸=l

Rl
pσli

xp(t)

}
(2)

where µl
σli

(z(t)) = hl
σli

(z(t))

/ rσl∑
i=1

hl
σli

(z(t)), hl
σli

(z(t)) =
p∏

j=1

M l
σlij

(zj(t)), rσl
is the number

of fuzzy rules.
For the matrices Hp

l ∈ Rn×n, denote the qth row of Hp
l as Hpq

l and define

ℓ (Hp
l ) := {xl(t) ∈ Rn : |Hpq

l | ≤ 1, q = 1, 2, . . . , m} (3)

Let 1 or 0 be the diagonal elements of ν, which are m×m diagonal matrices. Suppose
that each element of ν is labeled as El, l = 1, 2, . . . , 2m. Denote E−

l = I − El. Note that
E−

l is also an element of ν if El ∈ ν.
The following lemma, which captures certain properties of dynamical system with ac-

tuator saturation, will be used in this paper.

Lemma 2.1. [11] Let F ∈ Rm×n and H ∈ Rm×n be given. If xl(t) ∈ ℓ(F ), then sat(Fxl(t))
can be rewritten as:

sat(Fxl(t)) =
2m∑
k=1

ηk(t)
(
Ek

l F + Ek−
l H

)
xl(t) (4)

where ηk(t) for k = 1, 2, . . . , 2m are some scalars, 0 ≤ ηk(t) ≤ 1 and
2m∑
k=1

ηk(t) = 1.

The purpose of this study is to determine a state feedback decentralized controller with
the decentralized switching law σ(x(t)) = [σ1(x1(t)) σ2(x2(t)) · · · σN(xN(t))]T such that
the closed-loop fuzzy system is asymptotically stable.
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3. Main Results. Based on PDC principle, we design the following fuzzy controllers as

uσli(t) = −
rσl∑
i=1

µl
σli

(z(t))sat
(
K l

σli
xl(t)

)
(5)

So the closed-loop fuzzy switched system is represented as follows

ẋl(t) =

rσl∑
i=1

rσl∑
j=1

µl
σli

(z(t))µl
σlj

(z(t))

{
Al

σli
xl(t) − Bl

σli
sat

(
K l

σlj
xl(t)

)
+

N∑
p=1, p ̸=l

Rl
pσli

xp(t)

}
(6)

By using Lemma 2.1, system (6) can be represented as

ẋl(t) =
2m∑
k=1

ηk(t)

rσl∑
i=1

rσl∑
j=1

µl
σli

(z(t))µl
σlj

(z(t))

{
Al

σli
xl(t)

−Bl
σli

(
Ek

l K l
σlj

+ Ek−
l H l

σlj

)
xl(t) +

N∑
p=1, p ̸=l

Rl
pσli

xp(t)

}
(7)

A set of sufficient conditions on the stability for system (7) is provided in the following
theorem.

Theorem 3.1. For the fuzzy switched system (7), if there exist non-positive (non-negative)
βσlλl

∈ R (l = 1, 2, . . . , N , σl, λl = 1, 2, . . . , Ml, σl ̸= λl), positive definite matrices P l
σl

with appropriate dimensions and δσli > 0, εσli > 0, ξ > 0 (i = 1, 2, . . . , rσl
), satisfying the

following conditions

Γσlij +

Ml∑
λl=1, λl ̸=σl

βσlλl

(
P l

λl
− P l

σl

)
< 0 (8)

with

Γσlij = Al
σli

T
P l

σl
+ P l

σl
Al

σli
− δσljP

l
σl

Bl
σlj

Ek
l Ek

l

T
Bl

σli

T
P l

σl
− δσljP

l
σl

Bl
σli

Ek
l Ek

l

T
Bl

σlj

T
P l

σl

− εσljP
l
σl

Bl
σlj

Ek−
l Ek−

l

T
Bl

σli

T
P l

σl
− εσljP

l
σl

Bl
σli

Ek−
l Ek−

l

T
Bl

σlj

T
P l

σl

+
1

ξ
(N − 1)P l

σl
P l

σl
+

N∑
p=1, p ̸=l

ξ
(
Rp

lσli

)T
Rp

lσli

then the controller (4), with the switching law σ = σ(x(t)) can guarantee the closed-loop
switched system (7) is asymptotical stability. Moreover, the control gain matrices are

K l
σli

= δσli

(
Bl

σli
Ek

l

)T
P l

σl
and H l

σli
= εσli

(
Bl

σli
Ek−

l

)T
P l

σl
.

Proof: Without loss of generality, we assume βσlλl
≥ 0. Obviously, for every xl(t) ∈

Rn\{0}, there exists a σl ∈ Ml such that xT
l (t)(Pλl

− Pσl
)xl(t) ≥ 0, ∀λl ∈ Ml, then from

the matrix Inequality (8), we have

xT
l (t)

[
Γσlij +

Ml∑
λl=1, λl ̸=σl

βσlλl

(
P l

λl
− P l

σl

)]
xl(t) < 0 (9)

Let Ωl
σl

=
{
xl(t) ∈ Rn|xT

l (t)(Pλl
− Pσl

)xl(t) ≥ 0, ∀xl(t) ̸= 0
}
, then for any l ∈ N , we

have
∪
σl

Ωl
σl

= Rn\{0}. Construct the sets Ω̃l
1 = Ωl

1, Ω̃
l
2 = Ωl

2, · · · , Ω̃l
Ml

= Ωl
Ml

−
Ml−1∪
i=1

Ω̃l
i, it

is easy to see that
Ml∪
i=1

Ω̃l
i = Rn − {0}, and Ω̃l

i ∩ Ω̃l
j = ϕ, i ̸= j. Therefore, we design the

switching law as

σl(xl(t)) = γ when xl(t) ∈ Ω̃l
i (10)
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The Lyapunov function is chosen as follows:

V (t) = xT
l (t)P l

σl
xl(t) (11)

The derivative of V (t) can be written as

V̇ (t) = ẋT
l (t)P l

σl
xl(t) + xT

l (t)P l
σl

ẋl(t)

=
2m∑
k=1

ηk(t)

rσl∑
i=1

rσl∑
j=1

µl
σli

(z(t))µl
σlj

(z(t))

{
xT

l (t)
[
Al

σli

T
P l

σl
+ P l

σl
Al

σli
−

(
Ek

l K l
σlj

)T

×Bl
σli

T
P l

σl
− P l

σl
Bl

σli
Ek

l K l
σlj

−
(
Ek−

l H l
σlj

)T
Bl

σli

T
P l

σl
− P l

σl
Bl

σli
Ek−

l H l
σlj

]
xl(t)

+
N∑

p=1, p ̸=l

xT
p (t)

(
Rl

pσli

)T
P l

σl
xl(t) + xT

l (t)P l
σl

N∑
p=1, p ̸=l

Rl
pσli

xp(t)

}

=
2m∑
k=1

ηk(t)

rσl∑
i=1

rσl∑
j=1

µl
σli

(z(t))µl
σlj

(z(t))

{
xT

l (t)
[
Al

σli

T
P l

σl
+ P l

σl
Al

σli

− δσljP
l
σl

Bl
σlj

Ek
l Ek

l

T × Bl
σli

T
P l

σl
− δσljP

l
σl

Bl
σli

Ek
l Ek

l

T
Bl

σlj

T
P l

σl

− εσljP
l
σl

Bl
σlj

Ek−
l Ek−

l

T
Bl

σli

T
P l

σl
− εσljP

l
σl

Bl
σli

Ek−
l × Ek−

l

T
Bl

σlj

T
P l

σl

]
xl(t)

+
N∑

p=1, p ̸=l

xT
p (t)

(
Rl

pσli

)T
P l

σl
xl(t) + xT

l (t)P l
σl

N∑
p=1, p ̸=l

Rl
pσli

xp(t)

}
(12)

By the inequality XT Y + Y T X ≤ ξXT X + ξ−1Y T Y (ξ > 0), (12) can be rewritten as

V̇ (t) ≤
2m∑
k=1

ηk(t)

rσl∑
i=1

rσl∑
j=1

µl
σli

(z(t))µl
σlj

(z(t))

{
xT

l (t)
[
Al

σli

T
P l

σl
+ P l

σl
Al

σli

− δσljP
l
σl

Bl
σlj

Ek
l Ek

l

T × Bl
σli

T
P l

σl
− δσljP

l
σl

Bl
σli

Ek
l Ek

l

T
Bl

σlj

T
P l

σl

− εσljP
l
σl

Bl
σlj

Ek−
l Ek−

l

T
Bl

σli

T
P l

σl
− εσljP

l
σl

Bl
σli

× Ek−
l Ek−

l

T
Bl

σlj

T
P l

σl

]
xl(t)

+
N∑

p=1, p ̸=l

[
ξxT

p (t)
(
Rl

pσli

)T
Rl

pσli
xp(t) +

1

ξ
xT

l (t)P l
σl

P l
σl

xl(t)

]}

=
2m∑
k=1

ηk(t)

rσl∑
i=1

rσl∑
j=1

µl
σli

(z(t))µl
σlj

(z(t))xT
l (t)

{
Al

σli

T
P l

σl
+ P l

σl
Al

σli

− δσljP
l
σl

Bl
σlj

Ek
l Ek

l

T × Bl
σli

T
P l

σl
− δσljP

l
σl

Bl
σli

Ek
l Ek

l

T
Bl

σlj

T
P l

σl

− εσljP
l
σl

Bl
σlj

Ek−
l Ek−

l

T
Bl

σli

T
P l

σl
− εσljP

l
σl

Bl
σli

× Ek−
l Ek−

l

T
Bl

σlj

T
P l

σl

+
1

ξ
(N − 1)P l

σl
P l

σl
+

N∑
p=1, p ̸=l

ξ
(
Rp

lσli

)T
Rp

lσli

}
xl(t) (13)

By (8) and the decentralized switching law, we have V̇ (t) < 0. Therefore, the switched
closed-loop fuzzy system with actuator saturation is asymptotically stable.

Note that matrix inequalities Γl = Γσlij +
∑Ml

λl=1, λl ̸=σl
βσlλl

(
P l

λl
− P l

σl

)
< 0 are not linear

matrix inequalities (LMIs). Therefore, we should transform Γl < 0 into LMIs to obtain
positive definite matrices P l

σl
, control gain matrices K l

σli
and H l

σli
.
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Pre- and post-multiplying both side of (8) by matrix Ql
σl

= P l
σl

−1
and using Schur’s

complement, then we have

Πσlij Ql
σl

· · · Ql
σl

Ql
σl

(
Rl

1σli

)T · · · Ql
σl

(
Rl

Nσli

)T

∗ −β−1
σl1

Ql
1 · · · 0 0 · · · 0

∗ ∗ . . .
...

...
...

...
∗ ∗ ∗ −β−1

σlMl
Ql

Ml
0 · · · 0

∗ ∗ ∗ ∗ −1

ξ
I · · · 0

∗ ∗ ∗ ∗ ∗ . . .
...

∗ ∗ ∗ ∗ ∗ ∗ −1

ξ
I


< 0 (14)

with

Πσlij = Ql
σl

(
Al

σli

)T
+ Al

σli
Ql

σl
− δσljB

l
σlj

Ek
l

(
Bl

σli
Ek

l

)T − δσljB
l
σli

Ek
l

(
Bl

σlj
Ek

l

)T

−εσljB
l
σlj

Ek−
l

(
Bl

σli
Ek−

l

)T − εσljB
l
σli

Ek−
l

(
Bl

σlj
Ek−

l

)T
+

1

ξ
(N − 1)I

−
Ml∑

λl=1, λl ̸=σl

βσlλl
Ql

σl

Ql
λl

= P l
λl

−1
, λl = 1, 2, . . . , Ml.

The matrices Ql
σl

(thus P l
σl

= Ql
σl

−1
) can be obtained by solving the LMIs in (14).

By substituting P l
σl

into K l
σli

= δσli

(
Bl

σli
Ek

l

)T
P l

σl
and H l

σli
= εσli

(
Bl

σli
Ek−

l

)T
P l

σl
, we can

easily solve K l
σli

and H l
σli

.

4. Simulation Study. Consider the following switched T-S fuzzy interconnected system
with actuator saturation:

ẋ1(t) =

[
ẋ1

1(t)

ẋ1
2(t)

]
=

2∑
i=1

µl
σli

(z(t))
{
A1

σli
x1(t) + B1

σli
sat(uσli(t)) + R1

2σli
x2(t)

}
ẋ2(t) =

[
ẋ2

1(t)

ẋ2
2(t)

]
=

2∑
i=1

µl
σli

(z(t))
{
A2

σli
x2(t) + B2

σli
sat(uσli(t)) + R2

1σli
x1(t)

}
where

A1
11 =

[
6.2 −2.1
2.3 −2.8

]
, A1

12 =

[
6.5 −2.8
2.7 −3

]
, A1

21 =

[
−2.9 7.8
−5.1 0.5

]
,

A1
22 =

[
2.2 −7.6
3.5 −4.6

]
, A2

11 =

[
1.1 0.8
0.1 0.5

]
, A2

12 =

[
0.6 0.5
1.1 0.2

]
, A2

21 =

[
0.1 1.6
−1.3 0.6

]
,

A2
22 =

[
2.2 −7.6
3.5 −4.6

]
, B1

11 = B1
12 =

[
−1
0.05

]
, B1

21 = B1
22 =

[
0.21
−0.13

]
,

B2
11 = B2

12 =

[
01

−2.35

]
, B2

21 = B2
22 =

[
−5.5
−3.3

]
, R1

211 =

[
0 0

0.02 0

]
,

R1
212 =

[
0 0

0.01 0

]
, R1

221 =

[
0 0

0.02 0

]
, R1

222 =

[
0 0

0.01 0.01

]
,

R2
111 =

[
1 0

0.01 0

]
, R2

112 =

[
0 2

0.02 0

]
, R2

121 =

[
1 0

0.01 0

]
, R2

122 =

[
0 2

0.02 0

]
,

Ek
1 = Ek

2 = 1, Ek−
1 = Ek−

2 = 0.
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Then the corresponding fuzzy membership functions are listed as follows:

µ1
11

(
x1

1(t)
)

= µ1
21

(
x1

1(t)
)

= 1 − 1/
(
1 + e−15x1

1(t)
)

,

µ1
12

(
x1

1(t)
)

= µ1
22

(
x1

1(t)
)

= 1/
(
1 + e−15x1

1(t)
)

,

µ2
11

(
x2

1(t)
)

= µ2
21

(
x2

1(t)
)

= 1 − 1/
(
1 + e−4x2

1(t)
)

,

µ2
12

(
x2

1(t)
)

= µ2
22

(
x2

1(t)
)

= 1/
(
1 + e−4x2

1(t)
)

.

The design parameters are chosen as

ε11 = ε12 = 6, ε21 = ε22 = 7, ξ = 3, β12 = β21 = 1, δ11 = δ12 = 10, δ21 = δ22 = 15.

By solving (14), we can obtain the positive definite matrices P l
σl

and K l
σli

as follows:

P 1
1 =

[
2.1256 −0.5255
−0.5255 2.2892

]
, P 1

2 =

[
1.7917 −0.7477
−0.7477 2.7710

]
,

P 2
1 =

[
0.0653 −0.0061
−0.0061 0.0171

]
, P 2

2 =

[
0.0194 −0.0134
−0.0134 0.0235

]
.

K1
11 = K1

12 =
[
−0.5187 6.8996

]
, K1

21 = K1
22 =

[
7.1018 −7.7569

]
,

K2
11 = K2

12 =
[

7.7956 −0.4635
]
, K2

21 = K2
22 =

[
−0.9338 −0.0543

]
.

Let
Ω1

1 =
{
x1 ∈ R2

∣∣xT
1

(
P 1

2 − P 1
1

)
x1 ≥ 0, x ̸= 0

}
,

Ω1
2 =

{
x1 ∈ R2

∣∣xT
1

(
P 1

1 − P 1
2

)
x1 ≥ 0, x ̸= 0

}
,

Ω2
1 =

{
x2 ∈ R2

∣∣xT
2

(
P 2

2 − P 2
1

)
x2 ≥ 0, x ̸= 0

}
,

Ω2
2 =

{
x2 ∈ R2

∣∣xT
2

(
P 2

1 − P 2
2

)
x2 ≥ 0, x ̸= 0

}
.

Then we have Ω1
1∪Ω1

2 = R2\{0}, Ω2
1∪Ω2

2 = R2\{0}. The switching laws are constructed
as

σ1(x1(t)) =

{
1, x1(t) ∈ Ω1

1

2, x1(t) ∈ Ω1
2\Ω1

1

, σ2(x2(t)) =

{
1, x2(t) ∈ Ω2

1

2, x2(t) ∈ Ω2
2\Ω2

1

The initial condition is chosen as
[

1.1 −4 1.5 −0.2
]T

. Then, the simulation results

are shown in Figures 1-4, where Figure 1 and Figure 2 show the trajectories of xl
σl

(σl,

Figure 1. x1
1 (solid line) and x1

2 (dotted line)
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Figure 2. x2
1 (solid line) and x2

2 (dotted line)

Figure 3. u11 (solid line) and u12 (dotted line)

i = 1, 2); Figure 3 and Figure 4 show the trajectories of uσli (σl = 1, 2, i = 1, 2). From the
simulation results, it is clear that the fuzzy decentralized controller with the decentralized
switching law guarantee the stability of switched T-S fuzzy interconnected system with
actuator saturation.

5. Conclusions. In this paper, the decentralized control problem has been investigated
for a class of switched T-S fuzzy interconnected system with actuator saturation. The
fuzzy model has been described by a class of fuzzy IF-THEN rules. By using the PDC
design principle, a state feedback decentralized controller has been developed. Based
on multiple Lyapunov function method and LMIs, the decentralized switching law and
sufficient conditions of ensuring the system stability have been obtained. It has been
proved that the proposed fuzzy control method can guarantee the closed-loop system to
be asymptotically stable. Future research will extend the results of this paper to switched
stochastic systems with actuator saturation.
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Figure 4. u21 (solid line) and u22 (dotted line)
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