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Abstract. In this paper, we propose a hybrid evolutionary algorithm based on a new
elitist strategy to address the problem of optimizing the multiple ontology alignments
simultaneously. Comparing with the conventional approach, our method is able to deal
with multiple pair of ontologies at a time, and through a new elitist strategy, avoid the
bias improvement caused by f-measure. Experimental results show that our approach is
effective.
Keywords: Ontology alignment, Hybrid evolutionary algorithm, Elitist strategy

1. Introduction. Ontologies are regarded as the solution to data heterogeneity on the
semantic web. However, because of human subjectivity, the ontologies could themselves
introduce heterogeneity: given two ontologies, one entity can be given different names
or simply be defined in different ways [5]. Addressing this heterogeneity problem re-
quires to identify correspondences between the entities of various ontologies. This process
is commonly known as ontology alignment which can be described as follows: given two
ontologies, each describing a set of discrete entities (which can be classes, properties, pred-
icates, etc.), find the relationships (e.g., equivalence or subsumption) that hold between
these entities [1].

It is highly impractical to align the ontologies manually when the size of ontologies is
considerably large. Thus, numerous alignment systems have arisen over the years. Since
none of the similarity measures could provide the satisfactory result independently, most
ontology alignment systems combine a set of different similarity measures together by ag-
gregating their aligning results. How to select the appropriate similarity measures, weights
and thresholds in ontology aligning process in order to obtain a satisfactory alignment
is called meta-matching which can be viewed as an optimization problem and be ad-
dressed by evolutionary approaches like Genetic Algorithm (GA) and hybrid evolutionary
algorithm such as Memetic Algorithms (MA). Among those meta-matching systems us-
ing evolutionary algorithm, the most notable system is GOAL (Genetics for Ontology
Alignments) [6]. Although GOAL does not directly compute the alignment between two
ontologies, it determines, through a GA, the optimal weight configuration for a weighted
average aggregation of several similarity measures by considering a reference alignment.
The same idea of implementing a meta-matching system to combine multiple similarity
measures into a single aggregated metric is also developed in papers [7, 8]. Inspired by
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GA, Acampora et al. employ MA in the alignment problem [5]. Since the MA has the ca-
pability of realizing local search process within the successive generations, it improves the
performance of genetic approach in both quality of solutions and computational efficiency.

Nevertheless, there are two main drawbacks of current evolutionary approaches which
determine the weights by one reference alignment of two ontologies. One of the drawbacks
is that it is difficult to deal with several reference alignments of various pairs of ontologies
by these approaches. The other one arises from f-measure which is generally used as
the evaluation of the alignment’s quality. Although there is an implicit consensus among
researchers that the f-measure is the best way of combining evaluation metric pairs, it is
controversial to rank the quality of individuals produced by MA according to the f-measure
only since an overall improvement in f-measure often derives from an improvement in one
of the metrics at the expense of a decrement in the other. To overcome these two defects,
in this paper, Unanimous Improvement Ratio (UIR) [2], a measure that complements
f-measure, is utilized to compare the qualities of individuals produced by MA. Given
a set of reference alignments, the aim of this paper is to utilize an MA using both f-
measure and UIR to find the optimal set of parameters, such as weights and thresholds,
to combine multiple similarity measures into a single aggregated metric and avoid the
bias improvement caused by f-measure.

2. Preliminaries.

2.1. Ontology and ontology alignment. There are many definitions of ontology over
years. However, the most frequently referenced one was given by Gruber in 1993 which
defined the ontology as an explicit specification of a conceptualization. For convenience
of the work in this paper, an ontology can be defined as follows [5].

Definition 2.1. An ontology is a triple O = (C,P, I), where C is the set of classes, P is
the set of properties, I is the set of individuals, i.e., the set of objects of the real world,
representing the instances of a concept.

In general, classes, properties and individuals are referred as entities.
To solve the heterogeneity problem between ontologies, a so-called ontology alignment

process is necessary. Formally, an alignment between two ontologies can be defined as
presented as follows [5].

Definition 2.2. An alignment between two ontologies is a set of mapping elements. A
mapping element is a 5-uple (id, e, e′, n, R), where id is a unique identifier for the mapping,
e and e′ are the entities of the first and the second ontology respectively, n is a confidence
measure in some mathematical structures (typically in the [0, 1] range) holding for the
correspondence between the entities e and e′, and R is a relation (typically the equivalence)
holding between the entities e and e′.

The ontology alignment process can be defined as follows [5].

Definition 2.3. The alignment process can be seen as a function Φ where given a pair of
ontologies O and O′, a partial (and optional) input alignment A, a set of parameters p,
and a set of resources r, returns a new alignment A′:

A′ = Φ (O, O′, A, p, r).

The ontology alignment process computes a mapping element by using a similarity
measure, which determines the closeness value n (related to a given relation R) between
the entities e and e′ in the range [0, 1], where 0 stands for complete inequality and 1 for
complete equality.
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2.2. Aggregation strategy. To combine all the similarity measures mentioned above,
an aggregation strategy is needed. In this work, we utilize weighted average aggregation
which is defined in the following:

ϕ (−→s (c) ,−→w ) =
n∑

i=1

wisi (c) with
n∑

i=1

wi = 1 and wi ∈ [0, 1] (1)

where −→s (c) is the vector of similarity measure results, −→w is the vector of weights, and n
is the number of similarity measures.

Since the quality of resulting alignment, the correctness and completeness of the cor-
respondences found already, need to be assessed, we will introduce some conformance
measures which derive from the information retrieval field in the next section.

2.3. F-measure and UIR.

2.3.1. Recall, precision and f-measure. The alignment is normally assessed on the ba-
sis of two measures commonly known as recall and precision. Recall (or completeness)
measures the fraction of correct alignments found in comparison to the total number of
correct existing alignments. Typically, recall is balanced against precision (or correct-
ness), which measures the fraction of found alignments that are actually correct. Given
a reference alignment R and some alignment A, recall and precision are given by the
following formulas [3]:

recall =
|R

∩
A|

|R|
(2)

precision =
|R

∩
A|

|A|
(3)

In most instances, it requires considering both recall and presicion to compare alignments’
performance. The most common combining function is the f-measure which is defined as
follows:

f -measure =
recall · precision

α · recall + (1 − α) · precision
(4)

where α is the relative weight of recall and precision which is in the range [0, 1]. When
α = 0 or 1, f-measure can be transformed into recall or precision; when α = 0.5, both
recall and precision have the same relative weight, and f-measure computes their harmonic
mean.

2.3.2. UIR. A problem of f-measure is that the relative weight is established intuitively
for a given task, but at the same time a slight change in the relative weight may produce
substantial changes in the rankings of individuals’ quality. If individual A improves an-
other individual B in precision with a loss in recall, f-measure may say that A is better
than B, depending on the relative weight α of precision and recall. Therefore, it is contro-
versial to rank the individuals’ quality according to the f-measure only. To overcome the
shortcoming of f-measure, we employ the UIR which is a measure that allows to compare
two individuals using recall and precision without dependency on the relative weight α in
f-measure. For two individuals A and B, UIR can be given by the following formula:

UIR (A,B) =
(|TA| − |TB|)

|T |
(5)

where TA is the set of cases for which individual A achieves precision and recall that are
greater than or equal to that of individual B; TB is the set of cases for which individual
B achieves precision and recall that are greater than or equal to that of individual A; T
is the set of all cases.
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In this work, we set α = 0.5 to favor neither precision nor recall. To estimate which
individuals’ performance differences in f-measure where α = 0.5 are robust against differ-
ent α values, we employ the rule of thumb in [2]: if UIR (A,B) > 0.25, then an observed
improvement of individual A over B in f-measure where α = 0.5 is robust.

The main advantage of UIR is that no metric weighting is necessary. However, there
remain two main limitations of UIR. First, as well as the unanimous improvement, it is
not transitive [2]. Therefore, it is not possible to define a linear individual ranking based
on UIR. In addition, there is some information lost when comparing systems given that
the ranges in evaluation results are not considered. Thus, we propose an MA utilizing
both the f-measure and UIR for optimizing multiple reference ontologies’ alignments.

3. MA Based on a New Elitist Strategy.

3.1. Encoding mechanism. We incorporate in an individual both the weights associ-
ated with the similarity measures and the threshold to decide whether a pair of entities
is an alignment or not. Therefore, one individual can be divided into two parts where
one stands for several weights and the other for threshold. Concerning the characteristics
of the weights which are mentioned in Section 2.2, our encoding mechanism indirectly
represents them by defining the cut or separation point in the interval [0, 1] that limits
the value of the weights. If p is the number of weights required, the set of cuts can be
represented as c′ =

{
c′1, c

′
2, . . . , c

′
p−1

}
. The individual decoding is carried out by queuing

the elements of c′ in ascending order, then we get c = {c1, c2, . . . , cp−1}, and calculate the
weights as follows:

wk =

 c1, k = 1
ck − ck−1, 1 < k < p
1 − cp−1, k = p

(6)

3.2. Fitness functions. Fitness functions are objective functions that evaluate the qual-
ity of the alignments obtained by using the weights and the threshold encoded in the in-
dividual. In our work, the fitness function should take into account the quality of all the
alignments. This is done by means of the average of all the f-measures for each reference
alignment as follows:

fitness =
f -measure1 + f -measure2 + · · · + f -measuren

n
(7)

where n is the number of reference alignments.

3.3. A new elitist strategy. Elitist strategy puts the best individual (elite) of the
current population unaltered in the next population. This assures the survival of the elite
that has been obtained up to the moment. In our work, we utilize f-measure and UIR
to obtain the elite of current generation. First, we calculate each individual’s reference
individual which is defined as follows: given an individual a, its reference individual Iref (a)
is the one that improves a with maximal UIR:

Iref (a) = Arg max(UIR(I, a)) (8)

In other words, Iref (a) represents the individual with which a should be replaced in
order to robustly improve across f-measures with different α values. And the one with
the maximal value of being the reference of other individuals has better quality than
the others. However, there may be several individuals with the same maximal number
of being the reference for other individuals. Then a baseline individual, whose weights
are all 0.25 and the threshold is 0.80, is taken. Comparing with baseline individual, the
individual with larger UIR is regarded as the one that has the better quality. Finally,
if there still exist some individuals whose quality cannot be winnowed via UIR, the one
with largest f-measure will be taken as the best individual of the current population.
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3.4. Local search process. In general, the local search strategies perform iterative
search for optimum solution in the neighborhood of a candidate. In order to trade off
between the local search and the global search, the local search process in our work is
designed according to the following rules: (1) the local search is applied within each evo-
lutionary cycle; (2) the local search is executed after crossover and mutation; (3) the local
search is applied to the best individual of population; (4) the local search method is the
hill climbing algorithm.

In particular, the hill climbing algorithm is a local search iterative method. During
iterations, the algorithm attempts to find a better individual by randomly mutating the
current one. If a mutation improves the current individual, then the new individual re-
places the current one. The search is repeated until no further improvement can be found
or after a maximum number of iterations.

4. Experimental Results and Analysis. In the experiments, the well-known bench-
marks provided by the Ontology Alignment Evaluation Initiative (OAEI) 2011 [4] are
used. Each benchmark in the OAEI data set is composed of two ontologies to be aligned
and a reference alignment to evaluate the quality of alignment. Moreover, according to
OAEI policies, the benchmark reference alignments take into account only the matching
between ontology classes and properties. Table 1 shows a brief description about the
benchmarks of OAEI 2011.

Table 1. Brief description of benchmarks

ID Brief description
101-104 The ontologies under alignment are the same or the first

one is the OWL Lite restriction of the second one
201-210 The ontologies under alignment have the same structure,

but different lexical and linguistic features
221-231 The ontologies under alignment have the same lexical

and linguistic features, but different structures
301-304 The ontologies under alignment are real world cases

4.1. Experiments configuration. In our experiment, the MA uses the following param-
eters: (1) Search space for each parameter is the continuous interval [0, 1]; (2) Numerical
accuracy = 0.01; (3) Population size = 20 individuals; (4) Crossover probability = 0.6;
(5) Mutation probability = 0.01; (6) Max generation = 5. After ten independent execu-
tions, we noticed that the genetic algorithm does not improve the results beyond the fifth
generation, so we have set a limit of five generations.

4.2. Results and analysis. Table 2 and Table 3 show the recall, precision and f-measure
values of solutions obtained by the baseline proposal, MA using f-measure only and MA
using f-measure and UIR by one reference alignment and multiple reference alignments,
respectively. In Table 2 and Table 3, R, P and F refer to recall, precision and f-measure
values and the combinations of benchmarks in Table 3 are selected randomly. Table 4 and
Table 5 present each solution’s UIR values and average f-measures, which are calculated
through the values in Table 2 and Table 3, where SA and SB refer to the solutions obtained
by MA using f-measure only and those by MA using f-measure and UIR, respectively.

As can be seen from Table 4, SB is better than SA in benchmarks 204, 205, 223, 301
and 302. While among the other benchmarks, the qualities of solutions are alike. From
the second column, the values of last two rows show the apparent improvement of SB

over SA. Although it is unable to distinguish the quality of solutions obtained by two
approaches from the second column among the rest benchmarks, the values in the third
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Table 2. Comparison of the results obtained by one reference alignment

ID
Baseline MA using f-measure only MA using f-measure and UIR
(R, P, F ) (R,P, F ) (R, P, F )

101 (0.00, 1.00, 0.00) (1.00, 1.00, 1.00) (1.00, 1.00, 1.00)
103 (0.96, 1.00, 0.98) (1.00, 1.00, 1.00) (1.00, 1.00, 1.00)
104 (0.99, 1.00, 0.99) (1.00, 1.00, 1.00) (1.00, 1.00, 1.00)
203 (0.80, 1.00, 0.89) (0.98, 1.00, 0.99) (0.98, 1.00, 0.99)
204 (0.69, 1.00, 0.82) (0.98, 0.99, 0.98) (0.91, 1.00, 0.95)
205 (0.21, 1.00, 0.34) (0.89, 0.99, 0.93) (0.37, 1.00, 0.54)
221 (0.98, 1.00, 0.99) (1.00, 1.00, 1.00) (1.00, 1.00, 1.00)
222 (0.98, 1.00, 0.99) (1.00, 1.00, 1.00) (1.00, 1.00, 1.00)
223 (0.96, 1.00, 0.98) (0.98, 1.00, 0.98) (0.98, 1.00, 0.99)
224 (0.00, 1.00, 0.00) (1.00, 1.00, 1.00) (1.00, 1.00, 1.00)
225 (0.97, 1.00, 0.98) (1.00, 1.00, 1.00) (1.00, 1.00, 1.00)
228 (1.00, 1.00, 1.00) (1.00, 1.00, 1.00) (1.00, 1.00, 1.00)
301 (0.29, 1.00, 0.45) (0.76, 0.74, 0.75) (0.34, 1.00, 0.51)
302 (0.21, 1.00, 0.34) (0.63, 0.83, 0.71) (0.40, 1.00, 0.57)

Table 3. Comparison of the results obtained by multiple reference alignments

Case No. ID
Baseline MA using f-measure MA using f-measure and
(R,P, F ) only (R,P, F ) UIR (R, P, F )

1
101 (0.00, 1.00, 0.00) (1.00, 1.00, 1.00) (1.00, 1.00, 1.00)
103 (0.96, 1.00, 0.98) (1.00, 1.00, 1.00) (1.00, 1.00, 1.00)

2
104 (0.99, 1.00, 0.99) (1.00, 0.98, 0.99) (1.00, 1.00, 1.00)
203 (0.80, 1.00, 0.89) (0.97, 1.00, 0.99) (0.86, 1.00, 0.92)

3
204 (0.69, 1.00, 0.81) (0.98, 0.99, 0.98) (0.94, 0.99, 0.96)
205 (0.21, 1.00, 0.34) (0.89, 0.99, 0.93) (0.45, 1.00, 0.62)

4
204 (0.69, 1.00, 0.81) (1.00, 1.00, 1.00) (1.00, 1.00, 1.00)
221 (0.23, 1.00, 0.37) (0.49, 0.87, 0.63) (0.67, 0.73, 0.70)

5
228 (1.00, 1.00, 1.00) (1.00, 0.89, 0.94) (1.00, 1.00, 1.00)
301 (0.29, 1.00, 0.45) (0.66, 0.75, 0.70) (0.37, 1.00, 0.54)

6
301 (0.29, 1.00, 0.45) (0.80, 0.70, 0.75) (0.41, 0.96, 0.57)
302 (0.21, 1.00, 0.34) (0.63, 0.75, 0.68) (0.40, 1.00, 0.57)
101 (0.00, 1.00, 0.00) (1.00, 0.94, 0.97) (1.00, 0.98, 0.99)

7 221 (0.98, 1.00, 0.99) (1.00, 0.94, 0.97) (1.00, 1.00, 1.00)
301 (0.29, 1.00, 0.45) (0.64, 0.79, 0.71) (0.44, 0.96, 0.60)
103 (0.96, 1.00, 0.98) (1.00, 0.98, 0.99) (1.00, 1.00, 1.00)

8 223 (0.96, 1.00, 0.98) (0.99, 0.94, 0.96) (0.98, 1.00, 0.99)
302 (0.21, 1.00, 0.34) (0.54, 0.90, 0.68) (0.40, 1.00, 0.57)
104 (0.99, 1.00, 0.99) (1.00, 0.98, 0.99) (1.00, 1.00, 1.00)

9 225 (0.97, 1.00, 0.98) (1.00, 0.92, 0.96) (1.00, 1.00, 1.00)
301 (0.29, 1.00, 0.45) (0.63, 0.77, 0.69) (0.24, 1.00, 0.38)

and the fourth columns show that SB is better than SA in benchmarks 204 and 205. In
the fifth and the sixth columns, the values of benchmark 223 show the priority of SB. To
conclude, through the comparison of the results obtained by one reference alignment by
two approaches, MA using both f-measure and UIR is effective.

As Table 5 shows, except case number 1, SB is better than SA in the rest cases. From
the third column, SB is apparently better than SA in case number 5, 7, 8 and 9. While



ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.7, NO.6, 2016 1247

Table 4. Comparison of UIR values of the results obtained by one refer-
ence alignment

ID UIR(SB, SA) UIR(SA, Baseline) UIR(SB, Baseline)
fitness of fitness of

SA SB

101 0.00 1.00 1.00 1.00 1.00
103 0.00 1.00 1.00 1.00 1.00
104 0.00 1.00 1.00 1.00 1.00
203 0.00 1.00 1.00 0.99 0.99
204 0.00 0.00 1.00 0.98 0.95
205 0.00 0.00 1.00 0.93 0.54
221 0.00 1.00 1.00 1.00 1.00
222 0.00 1.00 1.00 1.00 1.00
223 0.00 1.00 1.00 0.98 0.99
224 0.00 1.00 1.00 0.99 0.99
225 0.00 1.00 1.00 1.00 1.00
228 0.00 0.00 0.00 1.00 1.00
301 1.00 0.00 1.00 0.75 0.51
302 1.00 0.00 1.00 0.71 0.57

Table 5. Comparison of UIR values of the results obtained by multiple
reference alignments

Case ID UIR(SB, SA) UIR(SA, Baseline) UIR(SB, Baseline) fitness fitness
No. of SA of SB

1 101,103 0.00 1.00 1.00 1.00 1.00
2 104,203 0.00 0.50 1.00 0.99 0.96
3 204,205 0.00 0.00 0.50 0.96 0.79
4 204,221 0.00 0.50 0.50 0.82 0.85
5 228,301 0.50 −0.50 0.50 0.82 0.77
6 301,302 0.00 0.00 0.50 0.71 0.57
7 101,221,301 0.67 0.00 0.33 0.88 0.86
8 103,223,302 0.33 0.00 1.00 0.88 0.85
9 104,225,301 0.67 0.00 0.33 0.88 0.79

according to the values in the fourth and fifth columns, SB is apparently better than SA

in case number 2, 3 and 6. Finally, by comparing the fitness of SB with that of SA, SB

is better than SA in case number 4. To sum up, through the comparison of the results
obtained by multiple reference alignments using two approaches, MA using both f-measure
and UIR is much better than MA using f-measure only.

5. Conclusions. Ontology alignment is an important step in ontology engineering. In
this paper, a novel approach based on MA using both f-measure and UIR has been
proposed to aggregate different similarity measures into a single metric, and optimize the
quality of multiple reference ontologies’ alignments. The experimental results have shown
that the MA based on a new elitist strategy is effective to automatically configure the
parameters of similarity aggregation process and our approach could deal with multiple
reference ontologies’ alignments and avoid the bias improvement caused by f-measure.

In continuation of our research, the work is now being done on embedding MA using
both f-measure and UIR into a real ontology alignment system. We are also interested
in developing an Expert Decision Support System to help the ontology alignment system
to automatically decide the parameters and even which similarity measures should be
utilized.
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