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Abstract. This paper presents a method of an improvement in cascaded shape regres-
sion for face alignment. Firstly, our method begins with detecting several key points so as
to coarsely locate the initial shape. Secondly, a local region with radius refines the large
feature pool for feature selection. Lastly, we eliminate regressor which cannot minimize
the alignment errors during the training. The main contributions of our work include: i)
preventing final iteration from being trapped in local optima due to the poor initial shape,
ii) efficiently avoiding over-fitting caused by extremely large feature pool that brings about
noise features in feature selecting, and iii) reducing the number of weak regressors to en-
hance regression efficiency. Extensive experiments on COFW and HELEN face datasets
demonstrate that our method outperforms the traditional cascaded regression methods.
Keywords: Cascaded, Face alignment, Feature pool, Refining, Initial shape

1. Introduction. Given a face image, face alignment is achieved by estimating a shape
S that consists of M facial landmarks, making S as close as possible to the target shape
Ŝ, i.e., minimizing the alignment error

S = arg min
S

∥∥∥Ŝ − S
∥∥∥

2
(1)

Among many different methods for face alignment, cascaded shape regression [1-4] has
emerged as the leading and state-of-the-art method. Explicit Shape Regression (ESR) [1]
and Robust Cascaded Pose Regression (RCPR) [2] use boosted regression and random
fern [3] to regress selected discriminative pixel-difference features. Supervised Descent
Method (SDM) [4] is proposed for minimizing a Non-linear Least Squares (NLS) function.
Local Binary Features (LBF) [5] uses random forest to encode the local binary features
for each landmark independently.

These algorithms typically start from an initial shape S0, e.g., mean shape [2, 5] of
training samples, and progressively refine the shape estimations to output final shape
estimation S. In practice, the initial shape may be far from the target shape. So the
discrepancy between them is unlikely rectified by estimating a shape increment ∆S stage-
by-stage. As a consequence, the alignment may be trapped in local optima. Both [1, 2]
use a fern as a weak regressor. Randomly sampling P pixels, in total P 2 pixel-difference
features are generated. Out of P 2 features, they chose F pixel-difference features. This
converts into unaffordable task if they want to learn the most efficient feature combination.
In particular, there are many noise features in this large feature pool, which can easily
cause over-fitting and hurt performance in testing.
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Figure 1. Coarse-to-fine cascaded shape regression

Aiming at the shortcomings of the traditional cascaded shape regression, we propose
three improvements on it. Firstly, inspired by the fact that only a few salient landmarks
that can be reliably characterized in image, we coarsely locate eye centers and mouth
corners to help initial shape approach target shape, as shown in Figure 1. Secondly, we
refined feature pool to ensure to eliminate noise features and simultaneously preserve
the most discriminative texture information. Finally, since each weak regressor needs to
slightly minimize the sum of alignment errors, we eliminate regressor which cannot reduce
errors during the training.

The paper is organized as follows. Section 2 presents our face alignment framework.
Section 3 conducts experiments to demonstrate the performance of our method. Section
4 places the conclusion.

2. Revised Shape Regression. In this section, we detail our method on initial shape
coarse alignment, feature pool refining and regressors screening.

2.1. Key points detection and initial shape coarse alignment. The cascaded re-
gression approach begins with an initial shape S0 that comes from training samples, and
refines the shape through sequentially trained regressors. While the initial shape is far
from the target shape, the alignment process may be trapped in local optima.

In order to obtain the superior initial shape, we firstly use the Structured-Output Re-
gression Forests (SO-RF) [6] algorithm to coarsely detect the facial key points of eye
centers and mouth corners. The key to SO-RF lies on incorporating the structure infor-
mation of facial features, within the regression forests framework.

Then, a similarity transformation can be got by the initial shape and facial key points.
By the similarity transformation, we can obtain the center, rotation and scale of the
initial shape to target shape. We use multiple initial shapes by augmenting training data
to estimate for one face image. At last, we take the median of all estimation as final
output. This data augmentation method also has been adopted in [2, 5].

2.2. Cascaded regression. Cascaded regression is formed by a cascaded of T weak
regressors (R1, R2, . . . , RT ) . At each stage, regressors Rt produce an update ∆St, which
is then combined with previous iterations estimate St−1 to update shape estimation St.

St = St−1 + Rt
(
I, ∆Ŝt

)
, t = 1, . . . , T (2)
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where I is originally image and ∆Ŝt = Ŝ − St−1 is regression target of each stage.
To measure alignment errors between two shapes, we require a function:

err
(
Sa, Sb

)
=

∥∥Sa − Sb
∥∥ (3)

Using N training samples
{(

Ii, Ŝi, S
0
)}N

i=1
, each regressor Rt is trained to minimize the

sum of alignment errors:

Rt = arg min
R

∑N

i=1
err

(
Ŝi, S

t
i

)
(4)

We compare alignment errors before and after iteration to decide whether regression is
convergent or not:

ϵt =
∑N

i=1
err

(
Ŝi, S

t
i

)/ ∑N

i=1
err

(
Ŝi, S

t−1
i

)
(5)

If ϵt ≥ θ (θ ≤ 1), training stops; otherwise, we continue training. After training Rt, we
apply Equation (2) to update St for the next phase of training.

Each regressor Rt is a boosted regressor, e.g., Rt =
(
rt,1, rt,2, . . . , rt,K

)
. Moreover, since

each weak regressor rt,k needs to slightly minimize the sum of alignment errors, we define
the relative errors of each weak regressor rt,k as:

ϵt,k =
∑N

i=1
err

(
Ŝi, S

t−1
i + rt,k

(
Ii, ∆Ŝt

i

))/∑N

i=1
err

(
Ŝi, S

t−1
i

)
(6)

When ϵt,k ≤ 1, regressor rt,k is reserved; otherwise, we abandon it. Algorithm 1 shows the
main steps of the cascaded regression procedure. Finally, we will get K ′ (K ′ ≤ K) weak
regressors r. These regressors selecting mechanism, make each weak regressor slightly
minimize the alignment errors, and efficiently improve the efficiency of regression.

Algorithm 1 Training for cascaded shape regression

Input: training data
{(

Ii, Ŝi, S
0
)}N

i=1
1: for t = 1→ T do
2: ∆St ← 0, ∆Ŝt ← Ŝ − St−1

3: for k = 1→ K do
4: Compute a fern output rt,k

(
I, ∆Ŝt

)
5: if ϵt,k ≤ 1 then

6: Update ∆St ← ∆St + rt,k
(
I, ∆Ŝt

)
, ∆Ŝt ← ∆Ŝt − rt,k

(
I, ∆Ŝt

)
7: end if
8: end for
9: Update St ← St−1 + ∆St

10: if ϵt ≥ θ then
11: stop training
12: end if
13: end for
Output: R =

{
r1,1, r1,2, . . . , rt,k, . . .

}
2.3. Feature pool refining. Encouraged by the success of random fern for classification
[3], we use a standard fern as each regressor r. Our features use simple pixel-difference
features [5, 7]. We randomly sample P pixels and index a pixel p by its local coordinates
(δx, δy) with respect to nearest landmark m of St−1.

Using the entire face region as the sample region will result in many noise features or
poor discriminative features in the large feature pool. In our work, we refine this large
feature pool to select the most discriminative feature combination.
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Considering the most discriminative texture feature lies in a local region around the
estimated landmark St−1, we eliminate pixels that are far from previous estimated land-
mark from a local region with radius ω. As an overview of the whole approach, we list
the major refining mechanism in Algorithm 2. The process will finally generate L2 index
features. Now, the new challenge is how to get the optimal radius ω.

Algorithm 2 Obtaining and refining the feature pool

Input: radius ω and normalized mean shape S̄ = {x̄1, ȳ1, . . . , x̄M , ȳM}T , x̄, ȳ ∈ [−1 1]
1: for i = 0→ P do
2: Randomly sample a point pi(xi, yi) from the [−1 1] region
3: Set d0 ←∞
4: for j = 1→M do
5: dj ←

√
(xi − x̄j)2 + (yi − ȳj)2

6: if dj < dj−1 then
7: dmin ← dj, m← j, δx← xi − x̄j, δy ← yi − ȳj

8: end if
9: end for

10: if dmin < ω then
11: Collect index features f with index m and local coordinate (δx, δy)
12: end if
13: end for
Output: a vector index features {f1, f2, . . . , fL} (L ≤ P )

We believe that this radius ω is related to each stage distribution of ∆Ŝt. For efficiently
computation, we use simple the average ∆Ŝ of all landmarks. To get the optimal radius
ω, we train different models with various radii, and testing samples with test errors. We
repeat the experiment and take the radius with minimum test error as the best radius
ω. Our experiment demonstrates that the optimal radius will diminish stage-by-stage in
iteration. If ∆Ŝ of all training images distribute widely, the best radius ω is a big one;
otherwise, it is a small one.

Finally, we select F pixel-difference features to construct a fern as [1, 2] proposed.

3. Experiments. Our implementation of the proposed method is based on the Explicit
Shape Regression code provided by [1]. We empirically set T = 7, K = 500, P = 400, F
= 5, and θ = 0.91, and the parameters of ω are shown in Table 1. We provide comparable
results with other methods on the COFW [2] and HELEN [8].

Table 1. The number of weak regressors K ′, the optimal local region
radius ω and corresponding L at each stage for COFW dataset

stage Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 Stage 7
K ′ 487 417 376 301 277 212 136
ω 0.34 0.21 0.15 0.11 0.09 0.078 0.067
L 396 370 340 323 289 286 280

3.1. Performance evaluation. Our competitors are the shape regression based meth-
ods, including ESR and LBF. The performance is measured on Intel Core i5 3.20GHz
CPU with Ubuntu C++ implementation. The overall accuracy is reported based on the
Averaged Error (AE) and Cumulative Error Distribution (CED) curve to cater for differ-
ent evaluation schemes in the literature. We consider any errors above 10% to be a failure,
as suggested in [9]. Overall, Figure 2 presents some examples and comparable results.
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Figure 2. Example images from the COFW dataset where our method
outperforms ESR and LBF

Table 2. Averaged error (AE) and failure rates

COFW (29 landmarks) HELEN (68 landmarks)
Method AE failures Method AE failures

ESR 9.63 33% ESR 5.51 3.6%
LBF 8.34 20% LBF 5.37 6.2%

Our Method 6.37 11% Our Method 5.33 3.6%

(a) CED for 29-pts COFW dataset  (b) CED for 68-pts HELEN dataset
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Figure 3. Comparisons of cumulative errors distribution (CED) curves

Averaged error comparison: Table 2 is the comparison of our algorithm with other
two algorithms about AE and failure rates in various datasets. The errors are normalized
by dividing with the interocular distance. It can be observed if large variations of head
pose and occlusion occur in the datasets, our method outperforms other two methods;
otherwise it is on par with the LBF. The results demonstrate that the robustness of the
feature pool refining and the initial shape coarse alignment framework outperform the
conventional cascaded regression methods.

Cumulative error distribution comparison Figure 3 is the comparison of our
method with other two algorithms about CED curves. Again, CED mainly depends on
large head pose and partial occlusion. In addition, our method is more efficient to over-
come large head pose and partial occlusion, while LBF is more accurate in a simple
environment with no large variations of head pose or occlusion.

3.2. Further analyses. In principle, the final selected F features cannot provide suffi-
cient information in the entire face region, which leads to reducing accuracy. However, the
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feature pool refining and the initial shape coarse alignment mechanism make our method
efficient in eliminating many noise features and overcoming large head pose. The feature
pool refining provides a feasible way to select the most discrimination feature combination
quickly and accurately.

The feature pool refining plays an important role in our method in offering a better fea-
ture pool for selecting the most discriminative feature combination. For COFW dataset,
Table 1 shows the number of weak regressors K ′, the optimal local region radius ω and
correspondingly L in every stage. After feature pool refining, the size of feature pool is
decreased from P to L. The refining mechanism eliminates much noise and reduces train-
ing costs especially in the later stages. Without this process, the averaged error increases
to 7.5. Furthermore, the initial shape coarse alignment is introduced into our method to
overcome large head pose, especially in the early stages. If we simply put initial shapes
from a fixed range of neighbourhood of mean shape, the averaged errors would increase
from 6.37 to 8.5. Errors are mainly observed in cases of large head pose. Finally, the
regressors screening mechanism, also makes the number of regressors decrease from K to
K ′, and enhances regression efficiency.

4. Conclusion. Occlusions and large head pose are two main challenges for current
face alignment methods. To handle the challenges mentioned above, in this paper, a
novel method based on initial shape coarse alignment, feature pool refining and regressors
screening is proposed. Our method could prominently improve the robustness of tradi-
tional cascaded regression methods. The initial shape coarse alignment and feature pool
refining can efficiently locate the landmarks with large head pose and eliminate noise fea-
tures before selecting the most discriminative feature combination respectively. Last, our
regressors screening mechanism makes regression more efficient. In the future, we plan
to encode the local texture for landmarks to learn intrinsic features for more effective
regression.
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