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Abstract. This paper focuses on the parameter estimation for bilinear polynomial fil-
ters. The design scheme is the differential evolution (DE) algorithm which is one of evo-
lutionary computations. This kind of algorithm is full with real-valued operations during
the optimization. Due to some excellent properties in the DE algorithm, it has successfully
been applied in solving a variety of practical engineering optimization problems. With
the use of the DE algorithm, the parameter estimation problem especially for the bilinear
polynomial filter is discussed in this paper. By minimizing the error signal between the
actual output and model output, the filter coefficients can be accurately estimated. Fi-
nally, several independent runs with different sets of initial conditions are examined to
confirm the robustness and feasibility of the DE algorithm.
Keywords: Differential evolution (DE) algorithm, Bilinear polynomial filter, Parameter
estimation

1. Introduction. The differential evolution (DE) was proposed by Storn and Price in
1997 [1]. It has been proven to be an excellent searching algorithm for solving optimized
problems. Like other evolutionary computations, the DE is also a multi-direction search-
ing algorithm because it is based on a population consisting of many designed parameter
vectors. In recent years, a variety of engineering optimization problems have been solved
and explored by using the DE algorithm [2-9]. In [3], the authors proposed an optimiza-
tion scheme in which the DE is used to choose shape parameter and node distribution
when applying the radial basis function meshless numerical method. In [5], a specialized
DE technique to solve the transmission expansion planning (TEP) problem was devel-
oped and some comparisons were performed with other swarm methods. Moreover, an
optimization problem of heliostat field layout in solar central receiver systems on annual
basis has been solved using the DE algorithm [6].

Bilinear polynomial filter is a nonlinear digital system and is an extended version of the
infinite impulse response (IIR) digital filter. In addition to the input signal and output
signal, the bilinear polynomial filter also contains the products of input and output signals.
Thus, its modeling capacity is absolutely superior to the original IIR digital system, and
conversely the complexity to design the bilinear digital system is more difficult than the
IIR due to the nonlinearity. Recently, a large number of related researches on the bilinear
polynomial filter have been developed and investigated such as nonlinear system modeling
[2], parameter estimation [10,11], system identification [12-14], and multichannel active
control [15].

In References [10] and [11], they utilized the adaptive particle swarm optimization and
bilinear recursive least square (BRLS) algorithm, respectively, to solve the parameter es-
timation problem of the bilinear filter. However, in this paper we will propose another
novel parameter estimation scheme for bilinear polynomial filter via the DE optimal al-
gorithm. According to the design steps, the coefficients of bilinear digital system can be
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correctly estimated. At the beginning of the algorithm, all of designed filter coefficients
are collected to be a parameter vector, and many such parameter vectors further form a
so-called population. To achieve optimization, three evolutionary mechanisms including
the mutation, crossover, and selection operation are employed in the DE algorithm. All
parameter vectors in the population will be evolved by these three operations. The remain-
der of this paper is organized as follows. In Section 2, the difference equation expression
for the bilinear digital system is introduced. Section 3 will explain the DE algorithm in
detail and the DE-based design steps for parameter estimations are also given. Some
simulation results including several independent run tests are provided to show the appli-
cability and robustness of the developed method. Finally, a simple conclusion and future
research direction are addressed in Section 5.

2. Bilinear Polynomial Filter. The IIR digital filter is a basic and very important filter
and is broadly used in the digital signal processing (DSP) field. Its present output is fully
influenced by both the previous output signals and present and previous input signals.
For the digital filter design, this kind of filter can use fewer coefficients than the finite
impulse response (FIR) digital filter to achieve the same filtering performance. However,
the stability problem for designing the IIR digital system should always be taken into
account. Equation (1) shows the difference equation structure for the IIR digital filter

y[n] =
N∑

k=1

aky[n − k] +
M∑

k=0

bkx[n − k] = a1y[n − 1] + a2y[n − 2] + · · · + aNy[n − N ]

+b0x[n] + b1x[n − 1] + · · · + bMx[n − M ] (1)

where x and y denote the system input and output signals, respectively, ak and bk represent
the system coefficients, N is the number of past outputs and is also referred to as the
system order, and M is the number of the past input signals. Bilinear polynomial filter
considered in this study is an extended version of the IIR digital filter and can be expressed
by Equation (2)

y[n] =
N∑

k=1

aky[n − k] +
M∑

k=0

bkx[n − k] +
M∑

k1=0

N∑
k2=1

ck1k2x[n − k1]y[n − k2]

= a1y[n − 1] + a2y[n − 2] + · · · + aNy[n − N ]

+b0x[n] + b1x[n − 1] + · · · + bMx[n − M ]

+c01x[n]y[n − 1] + c02x[n]y[n − 2] + · · · + c0Nx[n]y[n − N ]

+c11x[n − 1]y[n − 1] + c12x[n − 1]y[n − 2] + · · · + c1Nx[n − 1]y[n − N ] + · · ·
+cM1x[n − M ]y[n − 1] + cM2x[n − M ]y[n − 2] + · · · + cMNx[n − M ]y[n − N ]

(2)
where ck1k2 is also the system coefficient which corresponds to the product of the input and
output signals. For simplification and convenience to the use of DE algorithm, Equation
(2) can further be rewritten as a vector form

y[n] = ΘUT (3)

where Θ is a collection of all the system coefficients defined by

Θ = [θ1, θ2, · · · , θK ] = [a1, · · · , aN , b0, · · · , bM , c01, · · · , cMN ] (4)

with the vector length K = N + (M + 1) + (M + 1)N = (M + 1)(N + 1) + N , and U is
another collection of all output, input, and their product signals given by

U = [y[n− 1], · · · , y[n−N ], x[n], · · · , x[n−M ], x[n]y[n− 1], · · · , x[n−M ]y[n−N ]]. (5)

Equation (4) is called the parameter vector in the viewpoint of DE algorithm and this
parameter vector will be correctly solved based on the DE algorithm according to a series
of input-output signal pairs.
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3. DE-based Design Steps for Parameter Estimation of Bilinear Polynomial
Filter. As described in Section 1, the DE algorithm is composed of three evolutionary
mechanisms including the mutation, crossover, and selection operations. In this section,
we will further explain these operations [2]. In the beginning of the algorithm, a system
cost function to evaluate the performance of each parameter vector should be defined. In
this study, it is simply defined by Equation (6)

CF =
L∑

n=0

e2[n] =
L∑

n=0

[y[n] − ŷ[n]]2 (6)

where L represents the sampling number and e is the error signal between the actual
system output y and estimated model output ŷ. A parameter vector with less cost func-
tion stands for a better one. With the definition of cost function in Equation (6), the
following operations are executed for each parameter vector inside the population. Here
the population size is denoted by PS.

In the mutation operation, a new mutated vector V = [v1v2, · · · , vK ] is obtained using
Equation (7)

V = Θα + F · (Θβ − Θγ) (7)

where Θα, Θβ, and Θγ are three different parameter vectors randomly chosen from the
population and F ∈ [0, 2] is a mutation constant factor that controls the amplification of
the differential variation Θβ − Θγ. Equation (7) reveals that the mutated vector V is a
full combination of Θα, Θβ, and Θγ. The derived mutated vector V will further cross with
a target vector Θ = [θ1, θ2, · · · , θK ]. In the crossover operation, it is to interchange some
elements between mutated vector V and target vector Θ. In order to achieve that, a new
vector [r1, r2, · · · , rK ] is generated where ri is a uniformly random number generated from
the interval [0, 1] for i = 1, 2, · · · , K, and another set of binary sequence [p1, p2, · · · , pK ]
is derived by Equation (8)

pi =

{
1, if ri < CR
0, otherwise

, for i = 1, 2, · · · , K (8)

where CR ∈ [0, 1] is the crossover rate and it is always set to 0.5. Based on this binary
sequence, a trial vector W = [w1, w2, · · · , wK ] can eventually be obtained by

wi =

{
θi, if pi = 1
vi, if pi = 0

, for i = 1, 2, · · · , K (9)

It is concluded from the crossover formula of Equation (9) that the trial vector W is a
full exchange outcome between V and Θ. Next step is to execute the selection operation
on both the trial vector W and the original target vector Θ. In brief, the selection is
to keep the excellent parameter vector and discard the bad one. As a result, the cost
functions of both W and Θ need to be calculated. If CF (W ) < CF (Θ), i.e., the trial
vector is superior to the target vector, then the algorithm keeps this derived trial vector
and discards the original target vector; otherwise the target vector still survives in the
population and omits the trial vector.

To perform the above three DE operations one time is called a generation or an iteration
of the algorithm. In general, there are two kinds of conditions to stop the algorithm: the
assigned number of iterations G is attained or the cost function derived during the opti-
mization is already met. In this paper, the algorithm stops when the former is satisfied.
Finally, Figure 1 displays the complete system block diagram for parameter estimation of
bilinear polynomial filter via the DE algorithm approach.



1176 W.-D. CHANG, S.-P. SHIH AND C.-L. CHI

Figure 1. System block diagram for parameter estimation of bilinear poly-
nomial filter using the DE algorithm

4. Simulation Results. To verify the applicability of the proposed method, some sim-
ulation examinations are provided in this section. Equation (10) shows the bilinear poly-
nomial filter and its corresponding coefficients will be estimated

y[n] = −0.65y[n−2]+1.5x[n−1]+0.76x[n]y[n−1]−2x[n]y[n−2]+0.4x[n−1]y[n−1] (10)

Referring to Equation (2), the actual filter coefficients are a2 = −0.65, b1 = 1.5, c01 = 0.76,
c02 = −2, and c11 = 0.4, respectively. To solve the coefficient estimation problem of
Equation (10), the related parameter settings used in the DE algorithm are listed in
Table 1. To excite both the bilinear polynomial filter and bilinear polynomial model
as shown in Figure 1, the input signal x[n] is the random number generated from the
interval [−1, 1] only for 0 ≤ n ≤ 50, and the initial value of each parameter vector is also
chosen from [−1, 1] randomly. Furthermore, five independent runs with different sets of
initial conditions (Run 1 ∼ Run 5) are performed to show the robustness of the algorithm.

Table 1. Related parameter setting used in the DE algorithm

Number of iterations Sampling number Population size Mutation constant factor
G L PS F

2000 50 40 0.5

Figure 2. Convergence tra-
jectories of all cost functions
for Run 1 ∼ Run 5

Figure 3. Convergence tra-
jectories of estimated parame-
ters a2 for Run 1 ∼ Run 5
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Figure 4. Convergence tra-
jectories of estimated parame-
ters b1 for Run 1 ∼ Run 5

Figure 5. Convergence tra-
jectories of estimated parame-
ters c01 for Run 1 ∼ Run 5

Figure 6. Convergence tra-
jectories of estimated parame-
ters c02 for Run 1 ∼ Run 5

Figure 7. Convergence tra-
jectories of estimated parame-
ters c11 for Run 1 ∼ Run 5

Simulation results are displayed in Figures 2-7. Figure 2 shows all convergence trajectories
of cost functions for Run 1 ∼ Run 5 with respect to the number of iterations. It is clearly
seen from Figure 2 that they eventually approximate to zero after about 1000 iterations.
In addition, the convergence trajectories of all filter coefficients estimated are also shown
in Figures 3-7, respectively, for Run 1 ∼ Run 5. As can be seen from these figures, the
actual filter coefficients can be accurately solved for any of independent runs.

5. Conclusions and Future Work. This paper has proposed a new parameter estima-
tion scheme for the bilinear polynomial filter by the differential evolution algorithm. For
the use of the algorithm, all filter coefficients estimated are collected to form a parameter
vector. By executing three main evolutionary operations on all parameter vectors inside
the population, the actual filter parameters can be correctly solved. Furthermore, the
robustness of the proposed method is also guaranteed by examining five independent runs
with different sets of initial conditions. Simulation results sufficiently show the appli-
cability of the proposed method on the coefficient estimation of the bilinear polynomial
filter. In our future study, other new evolutionary computations including the frog leap
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algorithm, particle swarm optimization, and artificial bee colony may be considered to
tackle the same problem, and some comprehensive comparisons are further made.
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