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Abstract. This paper presents an adaptive fuzzy state feedback control design approach
for a class of uncertain nonlinear switched systems with unknown dead-zone. The un-
known nonlinear functions are approximated by fuzzy logic systems, and the problem of
unknown dead-zone is solved by introducing characteristic function, i.e., dead-zone is
represented as a simple linear system with a static time-varying gain and bounded dis-
turbance. With the help of backstepping control design principle and common Lyapunov
function stability theory, an adaptive fuzzy state feedback controller is developed. It is
proved that the proposed control approach can guarantee that all the signals of the closed-
loop system are semi-globally uniformly ultimately bounded (SGUUB) and the tracking
error remains an adjustable neighborhood of the origin. The results of simulation exam-
ple illustrate the effectiveness of the proposed approach.
Keywords: Nonlinear switched systems, Fuzzy adaptive control, Dead-zone, Backstep-
ping technique

1. Introduction. Switched systems have significance in the modeling of many engineer-
ing applications, and have attracted more and more attention in the control community.
Recently, the analysis and synthesis especially the stability analysis has been studied for
several classes of switched nonlinear systems and some design methods have been pro-
posed in [1-3]. The author in [1] developed a novel adaptive fuzzy state feedback control
approach based on the common Lyapunov function method for a class of pure-feedback
switched nonlinear systems under arbitrary switchings. [2] has proposed an adaptive neu-
ral control technique for a class of switched system with unmeasured states based on
average dwell time and backstepping. An adaptive neural network control method in [3]
has been presented for a class of switched nonlinear systems with switching jumps and
uncertainties in both system models and switching signals based on dwell-time property.
However, the work in [1-3] did not consider the problem of unknown dead-zone.

In addition, dead-zone is one of very important non-smooth nonlinearities arisen in ac-
tuator, which can lead to sever deterioration of the systems performance. In resent years,
based on the backstepping control design technique, some methods have been developed
to solve the problem of unknown dead-zone [4-6]. The author in [4] introduced smooth
inverse function to compensate the effect of the unknown dead-zone in controller design.
In [5], a new dead-zone actuator model is proposed which contains a linear-like term,
a nonlinear term, and a disturbance-like term. In this paper, we are using the similar
method as [6] to solve the problem of unknown dead-zone but [6] proposes an adaptive
surface control for pure feedback form and [4-6] are used to control non-switched nonlinear
systems and not applied to switched nonlinear systems.

Motivated by the aforementioned observations, this paper proposed an adaptive fuzzy
control design method for a class of single input and single out (SISO) switched nonlinear
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systems with unknown dead-zone. In the control design, fuzzy logic systems are utilized to
model the unknown nonlinear functions, and the problem of unknown dead-zone is solved
by introducing characteristic function which is represented as a simple linear system with a
static time-varying gain and bounded disturbance. Under the framework of backstepping
control design procedure and arbitrary switching rulers, an adaptive fuzzy controller and
adaptation laws are developed based on common Lyapunov function. It is proved that all
the signals in the closed-loop systems remained SGUUB, and the tracking error converged
to a small neighborhood of the origin.

2. Problem Formulations and Preliminaries. Consider the following class of SISO
nonlinear switched systems with unknown dead-zone:

ẋ1 = x2 + fσ(t),1(x1) + ∆σ(t),1(x̄n, t)

ẋi = xi+1 + fσ(t),i(x̄i) + ∆σ(t),i(x̄n, t), i = 2, · · · , n − 1

ẋn = u + fσ(t),n(x̄n) + ∆σ(t),n(x̄n, t)

y = x1

(1)

where x̄i = [x1, · · · , xi]
T ∈ Ri (i = 1, · · · , n) are the state vector and y ∈ R is the output.

σ(t) : [0,∞) → Ξ
def
= {1, 2, · · · , N} is a piecewise constant function called switching signal

(or law), which takes values in the compact set Ξ. If σ(t) = k, then we say the k-th sub-
system is active and the remaining subsystems are inactive. fk,i(x̄i) (k ∈ Ξ, i = 1, . . . , n)
are unknown smooth function. ∆k,i(x̄n, t) are the unknown uncertain disturbances. u ∈ R
is the output of the dead-zone, which is described by:

u = D(v) =

 gr(v), if v ≥ br

0, if − bl ≤ v ≤ br

gl(v), if v ≤ −bl

(2)

v ∈ R is the input of the dead-zone, br and bl are unknown parameters of the dead-zone.
The control objective of this paper is to design an adaptive fuzzy controller for switched

system with unknown dead-zone (1), under arbitrary switching rulers such that all signals
in the closed-loop system remain SGUUB and the tracking error z1 = y − yr (yr is the
given reference signal) can converge to a small neighborhood of the origin.

Throughout the paper, the following assumptions and lemma are needed.

Assumption 2.1. There exist unknown positive constants pk,i, such that ∀(x̄n, t) ∈ Rn ×
R+, |∆k,i(x̄n, t)| ≤ pk,iρk,i(x̄i), with ρk,i(x̄i) being unknown positive smooth functions,
i = 1, · · · , n.

Assumption 2.2. [6]: The dead-zone can be rewritten as follows:

u = D(v) = kT(t)ϕ(t)v + d(v) (3)

where |d(v)| ≤ τ , τ = (kr1 + kl1) max{br,−bl} is an unknown positive constant. The
assumptions about the dead-zone are the same with Assumptions 1-3 in [6]. From [6], we
obtain that kT(t)ϕ(t) ∈ [β0, kl1 + kr1], in which β0 ≤ min{kl0, kr0} is a positive constant.

Lemma 2.1. [7]: For any given real continuous function F (x̄), on a compact set Ω ∈ RN ,

there exists a fuzzy logic system F̂ (x̄ |θ ) = θTφ(x̄) such that ∀ε > 0∣∣F (x̄) − θTφ(x̄)
∣∣ < ε (4)

where θ = (θ1, · · · , θM)T is the estimate parameter vector, and φ(x̄)=(φ1(x̄), · · · , φM(x̄))T

is the vector of fuzzy basis functions, M is the number of fuzzy rulers.

Define the optimal parameter vector θ∗ as:

θ∗ := arg min
θ∈RN

{sup
x̄∈Ω

∣∣F (x̄) − θTφ(x̄)
∣∣} (5)
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Assumption 2.3. There exists a parameter vector θ∗ such that |ε| ≤ ε∗ with constant
ε∗ > 0 for all x̄ ∈ Ω.

3. Adaptive Fuzzy Control Design. The n-step adaptive fuzzy backstepping control
design is based on the following change of coordinates:

z1 = x1 − yr (6)

zi = xi − αi−1, i = 2, · · · , n (7)

where zi (i = 1, · · · , n) is called the virtual error, αi−1 is the intermediate function, which
will be designed later.

Step 1: The time derivative of z1 is

ż1 = x2 + fk,1(x1) + ∆k,1(x̄n, t) − ẏr (8)

Using Young’s inequality and Assumption 2.1, one has

|z1∆k,1(x̄n, t)| ≤ |z1| pk,1ρk,1(x1) ≤
z2
1ρ

2
k,1(x1)

2
+

1

2
p2

1 (9)

where p1 = max
k∈Ξ

pk,1 is an unknown positive constant.

Substituting (9) into (8) results in

z1ż1 ≤ z1

[
x2 + fk,1(x1) − ẏr +

z1ρ
2
k,1(x1)

2

]
+

1

2
p2

1 (10)

Fuzzy logic systems θ∗Tk,1φk,1(x1, yr) are used to approximate hk,1(x1, yr), i.e.,

hk,1(x1, yr) = fk,1(x1) +
z1ρ

2
k,1(x1)

2
= θ∗Tk,1φk,1(x1, yr) + εk,1(x1, yr) (11)

From (7) and substituting (11) into (10) results in

z1ż1 ≤ z1

[
z2 + α1 + θ∗Tk,1φk,1(x1, yr) + εk,1(x1, yr) − ẏr

]
+

1

2
p2

1 (12)

Applying Young’s inequality again and using Assumption 2.3, one has

z1

[
z2 + α1 + θ∗Tk,1φk,1(x1, yr) + εk,1(x1, yr) − ẏr

]
≤ z1

(
α1 − ẏr + z1 +

z1Θ
∗
1

2a2
1

)
+

ε∗21

2
+

a2
1

2
+

z2
2

2

(13)

where a ̸= 0, Θ∗
1 = max

k∈Ξ

∥∥θ∗k,1

∥∥2
, ε∗1 = max

k∈Ξ
ε∗k,1 is an unknown constant.

Consider the following Lyapunov function candidate:

V1 =
z2
1

2
+

1

2γ1

Θ̃2
1 (14)

where γ1 > 0 is a design parameter, Θ1 is the estimate of Θ∗
1 and Θ̃1 = Θ∗

1 − Θ1 is the
parameter estimate error.

From (13) and take the time derivative of V1 as

V̇1 ≤ z1

[
α1 + z1 +

z1Θ1

2a2
1

− ẏr

]
+

a2
1

2
+

ε∗21

2
+

z2
2

2
+

Θ̃1

γ1

(
z2
1γ1

2a2
1

− Θ̇1

)
+

p2
1

2
(15)

Choose the intermediate control function α1 and parameter adaptive law Θ1 as:

α1 = −c1z1 − z1 −
z1

2a2
1

Θ1 + ẏr (16)

Θ̇1 =
z2
1γ1

2a2
1

− σ1Θ1 (17)

where c1 > 0 and σ1 > 0 are design constants.
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Substituting (16) and (17) into (15) results in

V̇1 ≤ −c1z
2
1 +

σ1Θ̃1Θ1

γ1

+
1

2
z2
2 +

a2
1

2
+

ε∗21
2

+
1

2
p2

1 (18)

By completion of squares, we have

σ1Θ̃1Θ1

γ1

≤ −σ1Θ̃
2
1

2γ1

+
σ1Θ

∗2
1

2γ1

(19)

(18) can be rewritten as

V̇1 ≤ −c1z
2
1 −

σ1Θ̃
2
1

2γ1

+
1

2
z2
2 +

σ1Θ
∗2
1

2γ1

+
a2

1

2
+

1

2
ε∗21 +

1

2
p2

1 (20)

Step i (2 ≤ i ≤ n − 1): The time derivative of zi is

żi = xi+1 + fk,i(x̄i) + ∆k,i(x̄n, t) − α̇i−1 (21)

As the similar procedure in Step 1, and using mathematical induction, we can get the
intermediate control function αi and parameter adaptive law Θi as the following:

αi = −cizi −
3

2
zi −

ziΘi

2a2
i

(22)

Θ̇i =
z2

i γi

2a2
i

− σiΘi (23)

where ai ̸= 0, γi > 0, ci > 0 and σi > 0 are design constants.
Consider the following Lyapunov function candidate:

Vi = Vi−1 +
z2

i

2
+

1

2γi

Θ̃2
i (24)

The following expression can be obtained

V̇i ≤ −
i∑

j=1

cjz
2
j −

i∑
j=1

σjΘ̃
2
j

2γj

+
i∑

j=1

a2
j

2
+

i∑
j=1

ε∗2j

2
+

i∑
j=1

σjΘ
∗2
j

2γj

+
z2

i+1

2
+

i∑
j=1

p2
j

2
(25)

Step n: The time derivative of zn is

żn = fk,n (x̄n) + u + ∆k,n − α̇n−1 (26)

As the similar procedure in Step 1, and using mathematical induction, we can get the
control law v and parameter adaptive law Θn as the following:

v = − 1

β0

[
cnzn +

3

2
zn +

znΘn

2a2
n

]
(27)

Θ̇n =
z2

nγn

2a2
n

− σnΘn (28)

where Θn is the estimate of Θ∗
n

(
Θ∗

n = max
k∈Ξ

∥∥θ∗k,n

∥∥2
)

, an ̸= 0, cn > 0, γn > 0 and σn > 0

are design constants.

4. Stability Analysis. The aforementioned design procedures can be summarized as
the following theorem, and the correctness of the theorem will be verified later.

Theorem 4.1. For nonlinear uncertain switched system with unknown dead-zone (1),
under Assumptions 2.1-2.3, Lemma 2.1 and arbitrary switching rulers, the controller (27)
and together with the intermediate control (16) and (22), parameter adaptive laws (17),
(23) and (28), can guarantee our control objective by choosing the appropriate design
parameters.
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Proof: Consider the total Lyapunov candidate functions

V = Vn = Vn−1 +
z2

n

2
+

1

2γn

Θ̃2
n (29)

From (3), the time derivative of V is

V̇ = V̇n ≤ V̇n−1 + zn

[
u + θ∗Tk,nφk,n (x̄n, yr) + εk,n (x̄n, yr)

]
+

1

2
p2

n − Θ̃nΘ̇n

γn

≤ −
n−1∑
j=1

cjz
2
j −

n−1∑
j=1

σjΘ̃
2
j

2γj

+
n−1∑
j=1

1

2
a2

j +
n−1∑
j=1

1

2
ε∗2j +

n−1∑
j=1

σ1Θ
∗2
1

2γ1

+
n−1∑
j=1

p2
j

2

− Θ̃nΘ̇n

γn

+ zn

[
kT(t)ϕ(t)v + d(v) + θ∗Tk,nφk,n (x̄n, yr) + εk,n (x̄n, yr)

]
+

p2
n

2

(30)

Applying Young’s inequality, and applying kT(t)ϕ(t) ∈ [β0, kl1 + kr1] and |d(v)| ≤ τ , we
have

zn

[
kT(t)ϕ(t)v + θ∗Tk,nφk,n (x̄n, yr) + εk,n (x̄n, yr) + d(v)

]
≤ zn

(
β0v + zn +

znΘ∗
n

2a2
n

)
+

a2
n

2
+

1

2
ε∗2n +

1

2
τ 2

(31)

where Θ∗
n = max

k∈Ξ

∥∥θ∗k,n

∥∥2
, ε∗n = max

k∈Ξ
εk,n(x̄n, yr) is an unknown constant.

Substituting (27), (28) and (31) into (3), we obtain

V̇ ≤ V̇n ≤ −
n∑

j=1

cjz
2
j −

n∑
j=1

σjΘ̃
2
j

2γj

+ D (32)

where D =
n∑

j=1

a2
j

2
+

n∑
j=1

1
2
ε∗2j + 1

2
τ 2 +

n∑
j=1

σjΘ
∗2
j

2γj
+

n∑
j=1

p2
j

2
.

(32) can be further rewritten as

V̇n ≤ −αVn + β (33)

where α = min{2c1, · · · , 2cn, σ1, · · · , σn} and β = D.
Integrating the differential inequality (33), we have

V = Vn ≤ Vn(0)e−αt +
β

α

(
1 − e−αt

)
(34)

From (34), we can conclude that all the signals in the closed-loop system remain bounded
and the tracking error can converge to a small neighborhood of the origin.

5. Simulation Study. Consider the following second-order nonlinear switched systems
with unknown dead-zone: 

ẋ1 = x2 + f1,1(x1) + ∆1,1(x̄2, t)

ẋ2 = u + f1,2(x̄2) + ∆1,2(x̄2, t)

y = x1

(35)


ẋ1 = x2 + f2,1(x1) + ∆2,1(x̄2, t)

ẋ2 = u + f2,2(x̄2) + ∆2,2(x̄2, t)

y = x1

(36)

where f1,1(x1) = 0.5x1, f1,2(x̄2) = x1x2 sin(x1), f2,1(x1) = x1 sin(x1), f2,2(x̄2) = sin(x1x2).
The reference signal is given as yr(t) = sin(0.5t).

Parameters in controller and adaptive laws are chosen as c1 = 15, c2 = 20, a1 = 5,
a2 = 5, γ1 = 0.2, γ2 = 0.2, σ1 = 0.2, σ2 = 0.2.
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Choose the initial conditions as x1(0) = 1, x2(0) = −1, and the other initial values are
chosen as zeros. We choose D(v) as follows:

u = D(v) =

 (1 − 0.3 sin(v))(v − 0.2) v ≥ 0.2
0 −0.2 < v < 0.2
(0.8 − 0.2 cos(v))(v + 0.2) v ≤ −0.2

The simulation results are shown in Figures 1 and 2, where Figure 1 expresses the trajec-
tories of the output and tracking signal; Figure 2 exhibits the trajectory of u. From Figures
1 and 2, it can be concluded that under arbitrary switching rulers the proposed adaptive
fuzzy controller can guarantee all signals in the closed-loop system remain SGUUB and
the tracking error z1 = y − yr converges to a small neighborhood of the origin.

Figure 1. y (solid line) and yr (dashed line)

Figure 2. The trajectory of u

6. Conclusions. This paper has investigated the problem of tracking control design for
a class of SISO switched nonlinear systems with unknown dead-zone. With the help of
backstepping control design principle and common Lyapunov function stability theory, an
adaptive fuzzy controller and adaptation laws are developed under arbitrary switchings.
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The proposed control approach can not only solve the control design problem for a class
of switched nonlinear system with unknown dead-zone, but also can guarantee the control
performance. Future research will concentrate on the adaptive fuzzy backstepping control
design for uncertain nonlinear MIMO systems with unmeasured states and stochastic
systems based on the results of this paper.
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