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Abstract. A hybrid adaptive neural network (NN) output-feedback control approach is
proposed for a class of interconnected nonlinear systems with unmeasured states. In the
design, NNs are utilized to approximate the unknown nonlinear functions, and NN state
observers are designed to estimate the unmeasured states. By utilizing the designed state
observers, a serial-parallel estimation model is established. Based on dynamic surface
control technique and the prediction error between the system states observer model and
the serial-parallel estimation model, the adaptive NN decentralized controllers are devel-
oped. It is proved that all the signals of the closed-loop system are bounded. Simulation
studies illustrate the effectiveness of the proposed approach.
Keywords: Hybrid adaptive NN control, Dynamic surface control, Decentralized out-
put-feedback control, Serial-parallel estimation model

1. Introduction. In the past decades, adaptive neural network (NN) or fuzzy backstep-
ping control has received much attention, and many significant developments have been
achieved. However, due to the employment of the backstepping technique, these methods
inevitably suffer from another problem of “explosion of complexity”, which is caused by
repeated differentiations of some nonlinear functions, i.e., the virtual controllers designed
at each step within the conventional backstepping technique. As a result, the complexity
of a controller drastically grows as the order of the system increases. To overcome the
problem of the “explosion of complexity”, an adaptive NN backstepping control approach
was first proposed by [1] for a class of single-input and single-output uncertain nonlinear
systems based on the so called dynamic surface control (DSC) technique. Since then,
several adaptive NN and fuzzy backstepping DSC control schemes have been developed
[2-4].

Though the adaptive fuzzy or NN control design gained much progress, the original
intention employing fuzzy system/NN for approximating the system uncertainty is miss-
ing. Intuitively, the more precise approximation of the nonlinear function is achieved,
the better performance is expected. However, most efforts have been directed towards
achieving the stability and tracking performance. Little attention has been paid to the
accuracy of the identified intelligent models and to the transparency and interpretabil-
ity. By designing a serial-parallel estimation model and by using the modeling error,
the hybrid adaptive fuzzy identification and control was proposed in [5]. The method
achieves faster and improved tracking performance. However, the nth derivative of the
plant output is required to be known in [5], which is quite impractical. Recently, the
authors in [6] proposed a novel composite neural dynamic surface control of a class of
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uncertain nonlinear strict-feedback systems without satisfying the matching conditions.
The proposed control method used the prediction error between system states and serial-
parallel estimation model to construct the composite laws for NN weights updating, and
achieved better tracking performance than the previous methods [1]. However, the result
in [6] requires that the states of the controlled system are measured directly. [7] proposed
a composite adaptive fuzzy output feedback backstepping control method for a class of
single-input and single-output nonlinear systems. To the author’s best knowledge, by far,
no composite adaptive NN decentralized control results are available for uncertain inter-
connected nonlinear systems without satisfying the matching conditions, and the direct
measurement of the states. Compared with the existing literature, the main advantage of
the proposed control scheme is that this paper first investigated composite adaptive NN
decentralized control approach proposed for uncertain interconnected nonlinear systems
without satisfying the matching conditions. And the designed controller ensures that all
the variables involved in the closed-loop system are bounded.

2. Problem Formulations and Preliminaries. Consider a class of large-scale nonlin-
ear systems in the following form:

ẋi,1 = xi,2 + fi,1(yi) + ∆i,1(y1, . . . , yN)
ẋi,2 = xi,3 + fi,2(yi) + ∆i,2(y1, . . . , yN)

...
ẋi,ni−1 = xi,ni

+ fi,ni−1(yi) + ∆i,ni−1(y1, . . . , yN)
ẋi,ni

= ui + fi,ni
(yi) + ∆i,ni

(y1, . . . , yN)
yi = xi,1

(1)

where xi = [xi,1, · · · , xi,ni
]T ∈ Rni is the system state vector; ui ∈ R and yi ∈ R are the

control input and the output of the ith subsystem, respectively. fi,j(·) and ∆i,j(·) (1 ≤ i ≤
N, 1 ≤ j ≤ ni) are unknown nonlinear smooth functions, representing the nonlinearities
in the ith subsystem and the interconnection effects between the ith subsystem and other
subsystems. Throughout this paper, it is assumed that the only output yi is available for
measurement.

Assumption 2.1. ∆i,j(·) satisfies |∆i,j(y1, . . . , yN)|2 ≤ y2
1 + · · · + y2

N , (1 ≤ i ≤ N ,
1 ≤ j ≤ ni).

Control objective: For a given reference signal yi,r(t) (1 ≤ i ≤ N), t ≥ 0, which is a
smooth function of t with its time derivative ẏi,r bounded for t ≥ 0, the control objective
is to design an adaptive NN output feedback control scheme such that all the variables
involved in the closed-loop system are bounded.

The control design presented in this paper employs RBF NNs to approximate the
nonlinear function fi,j(·) in system (1), and assume that

fi,j(yi) = W ∗T
i,j φi,j(yi) + εi,j(yi) (2)

where W ∗
i,j is the ideal constant weight, and εi,j(·) is the approximation error, and it is

usually assumed that |εi,j(·)| ≤ ε∗i,j, where ε∗i,j is a known constant.
By substituting (2) into (1), system (1) can be presented in the following form ẋi = Aixi + Kiyi +

ni∑
j=1

Bi,jW
∗T
i,j φi,j(yi) + Bi,ni

ui + ∆i + εi

yi = CT
i xi

(3)



ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.7, NO.5, 2016 1085

where Ai =

 −ki,1
... Ini−1

−ki,ni
0 . . . 0

, Ki = [ki,1, . . . , ki,ni
]T , ∆i = [∆i,1, . . . , ∆i,ni

]T , εi =

[εi,1, . . . , εi,ni
]T , Bi,j = [ 0 . . . 1︸ ︷︷ ︸

j

. . . 0 ]T and CT
i = [ 1 · · · 0 · · · 0 ], and vector

Ki is chosen such that Ai is a strict Hurwitz matrix. Thus, given a Qi = QT
i > 0, there

exists a Pi = P T
i > 0 such that

AT
i Pi + PiAi = −2Qi (4)

Since the state variables are not available, a locally state observer for the ith subsystem
is designed as:  ˙̂xi = Aix̂i + Kiyi +

ni∑
j=1

Bi,jW
T
i,jφi,j(yi) + Bi,ni

ui

ŷi = CT
i x̂i

(5)

Let ei = xi − x̂i be observer error, and then from (3) and (5), one can obtain the observer
error equation

ėi = Aiei +

ni∑
j=1

Bi,j

(
W ∗T

i,j φi,j(yi) − W T
i,jφ

T
i,j(yi)

)
+ ∆i + εi (6)

Based on (5), a serial-parallel estimation model is designed as

˙̂
x̂i,1 = x̂i,2 + W T

i,1φi,1(yi) + λi,1

(
x̂i,1 − ˆ̂xi,1

)
˙̂
x̂i,2 = x̂i,3 + W T

i,2φi,2(yi) + λi,2

(
x̂i,2 − ˆ̂xi,2

)
...

˙̂
x̂i,ni−1 = x̂i,ni

+ W T
i,ni−1φi,ni−1(yi) + λi,ni−1

(
x̂i,ni−1 − ˆ̂xi,ni−1

)
˙̂
x̂i,ni

= ui + W T
i,ni

φi,ni
(yi) + λi,ni

(
x̂i,ni

− ˆ̂xi,ni

)
(7)

where λi,j > 0 (1 ≤ i ≤ N, 1 ≤ j ≤ ni) is a designed constant. Define the prediction
error as

δi,j = x̂i,j − ˆ̂xi,j (8)

From (5) and (7), we have

δ̇i,j = ki,j(yi − x̂i,1) − λi,j

(
x̂i,j − ˆ̂xi,j

)
(9)

3. Composite Adaptive NN Dynamic Surface Control.
Step i.1: Define the first error surface si,1 as

si,1 = xi,1 (10)

Expressing xi,2 in terms of its estimate as xi,2 = x̂i,2 + ei,2, the time derivative of si,1 is

ṡi,1 = x̂i,2 + W T
i,1φi,1(yi) + W̃ T

i,1φi,1(yi) + e2 + ∆i,1 + εi,1 (11)

where W̃i,j = W ∗
i,j − Wi,j. Choose the first virtual control function x̂i,2,d as follows:

x̂i,2,d = −ci,1si,1 − W T
i,1φi,1(yi) (12)

where ci,1 > 0 is a design parameter.
Introduce a new state variable x̂i,2,c and let x̂i,2,d pass through a first-order filter with

a constant τi,2 > 0, and the dynamics of x̂i,2,c can be expressed as

τi,2
˙̂xi,2,c + x̂i,2,c = x̂i,2,d, x̂i,2,c(0) = x̂i,2,d(0) (13)
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Define the following compensating signal to remove the defect known error x̂i,2,c − x̂i,2,d

żi,1 = −ci,1zi,1 + zi,2 + (x̂i,2,c − x̂i,2,d), zi,1(0) = 0 (14)

where zi,2 will be defined in the next step.
Define the compensated tracking error signals as χi,1 = si,1 − zi,1 and χi,2 = si,2 − zi,2,

and choose the adaptive law of parameter Wi,1 as

Ẇi,1 = γi,1

(
χi,1 +

δi,1

γ̄i,1

)
φi,1 (xi,1) − σi,1Wi,1 (15)

where γi,1 > 0, γ̄i,1 > 0 and σi,1 > 0 are design parameters.
Step i, j (2 ≤ j ≤ ni − 1): Define the ijth error surface si,j as

si,j = x̂i,j − x̂i,j,c (16)

where x̂i,j,c will be defined in (18). Choose the ijth virtual control function x̂i,j+1,d as
follows:

x̂i,j+1,d = −ci,jsi,j − W T
i,jφi,j(yi) − si,j−1 + ˙̂xi,j,c − ki,j (yi − x̂i,1) (17)

where ci,j > 0 is a design parameter.
Introduce a new state variable x̂i,j+1,c and let x̂i,j+1,d pass through a first-order filter

with a constant τi,j+1 > 0; the dynamics of x̂i,j+1,c can be expressed as

τi,j+1
˙̂xi,j+1,c + x̂i,j+1,c = x̂i,j+1,d, x̂i,j+1,c(0) = x̂i,j+1,d(0) (18)

Define the following compensating signal to remove the defect known error x̂i,j+1,c−x̂i,j+1,d

żi,j = −ci,jzi,j − zi,j−1 + zi,j+1 + (x̂i,j+1,c − x̂i,j+1,d) , zi,j(0) = 0 (19)

Define the compensated tracking error signal χi,j = si,j − zi,j, and choose the parameter
adaptive law of Wi,j as

Ẇi,j = γi,j

(
χi,j +

δi,j

γ̄i,j

)
φi,j(yi) − σi,jWi,j (20)

where γi,j > 0, γ̄i,j > 0 and σi,j > 0 are design parameters.
Step i.ni: In the last step, define the error surface si,ni

as

si,ni
= x̂i,ni

− x̂i,ni,c (21)

Choose the actual control input ui as

ui = −ci,ni
si,ni

− W T
i,ni

φi,ni
(yi) − si,ni−1 + ˙̂xi,ni,c − ki,ni

(yi − x̂i,1) (22)

where ci,ni
> 0 is a design parameter. Define the following compensating signal

żi,ni
= −ci,ni

zi,ni
− zi,ni−1, zi,ni

(0) = 0 (23)

Define the compensated signal χi,ni
= si,ni

− zi,ni
and the prediction error

δi,ni
= x̂i,ni

− ˆ̂xi,ni
(24)

where ˆ̂xi,ni
is obtained from the following serial-parallel estimation model:

˙̂
x̂i,ni

= ui + W T
i,ni

φi,ni
(yi) + λi,ni

(
x̂i,ni

− ˆ̂xi,ni

)
, ˆ̂xi,ni

(0) = x̂i,ni
(0) (25)

where λi,ni
> 0 are design parameters. Choose the adaptive function Wi,ni

as

Ẇi,ni
= γi,ni

(
χi,ni

+
δi,ni

γ̄i,ni

)
φi,ni

(yi) − σi,ni
Wi,ni

(26)

where γi,ni
> 0, γ̄i,ni

> 0 and σi,ni
> 0 are design parameters.
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4. Stability Analysis.

Theorem 4.1. For nonlinear strict-feedback system (1) with unmeasured states, under
Assumption 2.1, the controller (22), state observer (5) and serial-parallel estimation mod-
els (7), together with the virtual control functions (12) and (17), parameter adaptive laws
(15), (20) and (26), guarantee that all signals of the closed-loop system are bounded.

Proof: Consider the Lyapunov function candidate

V =
1

2

N∑
i=1

eT
i Piei +

1

2

N∑
i=1

ni∑
j=1

χ2
i,j +

N∑
i=1

ni∑
j=1

1

2γ̄i,j

δ2
i,j +

N∑
i=1

ni∑
j=1

1

2γi,j

W̃ T
i,jW̃i,j (27)

The time derivative of Vi along with (6) and (9) is

V̇ = −
N∑

i=1

eT
i Qiei +

N∑
i=1

eT
i Pi

(
εi +

ni∑
j=1

Bi,jW̃
T
i,jφi,j + ∆i

)
+

N∑
i=1

ni∑
j=1

χi,jχ̇i,j

+
N∑

i=1

ni∑
j=1

1

γ̄i,j

δi,j δ̇i,j +
N∑

i=1

ni∑
j=1

1

γi,j

W̃ T
i,j

˙̃Wi,j

(28)

By using Assumption 2.1, and the Young’s inequality, we have the following inequalities

eT
i Piεi ≤ ∥ei∥2 +

1

4
∥Pi∥2

ni∑
j=1

ε∗2i,j (29)

eT
i Pi

ni∑
j=1

Bi,jW
∗T
i,j φi,j(yi) − W T

i,jφ
T
i,j(yi) ≤ ∥ei∥2 ∥Pi∥2 +

ni∑
j=1

W̃ T
i,jW̃i,j (30)

eT
i Pi∆i ≤

1

2
∥ei∥2 ∥Pi∥2 +

1

2
ni

N∑
j=1

y2
j (31)

where pi = λmin(Qi) + 3
2
∥Pi∥2 + 1. From (5), (16) and (19), we have

χ̇i,j = W̃ T
i,jφi,j(yi) − ci,jχi,j − χi,j−1 + χi,j+1 − W̃ T

i,jφi,j(yi) (32)

From (5) and (7), we have

δ̇i,j = W̃ T
i,jφi,j(yi) + ki,j (yi − x̂i,1) − λi,jδi,j − W̃ T

i,jφi,j(yi) (33)

Substituting (29)-(33) into (28) yields

V̇ ≤ −
N∑

i=1

pi ∥ei∥2 +
N∑

i=1

ni∑
j=1

W̃ T
i,jW̃i,j + ω +

1

2
ni

N∑
i=1

N∑
j=1

y2
j +

N∑
i=1

y2
i

+
N∑

i=1

ni∑
j=1

χi,j

[
W̃ T

i,jφi,j(yi) − ci,jχi,j − χi,j−1 + χi,j+1 − W̃ T
i,jφi,j(yi)

]

+
N∑

i=1

ni∑
j=1

1

γ̄i,j

δi,j

[
W̃ T

i,jφi,j(yi) + ki,j (yi − x̂i,1) − λi,jδi,j − W̃ T
i,jφi,j(yi)

]

+
N∑

i=1

ni∑
j=1

1

γi,j

W̃ T
i,j

˙̃Wi,j

(34)
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where χi,ni+1 = 0, and ω = 1
4

N∑
i=1

ni∑
j=1

∥Pi∥2 ε∗2i,j. By using the Young’s inequality, we have

the following inequalities

V̇ ≤−
N∑

i=1

(pi − 1) ∥e∥2 −
N∑

i=1

ni∑
j=1

(
ci,j − N̄

)
χ2

i,j −
N∑

i=1

ni∑
j=1

(
λi,j

γ̄i,j

−
k2

i,j + 1

4

)
δ2
i,j

−
N∑

i=1

ni∑
j=1

(
σi,j

2γi,j

− 3

)
W̃ T

i,jW̃i,j + ω∗ + N̄

N∑
i=1

z2
i,1

(35)

where N̄ = 1+ max
1≤i≤N

{ni} and ω∗ = ω+
N∑

i=1

ni∑
j=1

σi,j

2γi,j
W ∗T

i,j W ∗
i,j. Choose the design parameters

ci,j, λi,j, γ̄i,j, σi,j and γi,j such that pi−1 > 0, ci,j−N̄ > 0,
λi,j

γ̄i,j
− k2

i,j+1

4
> 0 and

σi,j

2γi,j
−3 > 0,

respectively. Defining C = min{C1, . . . , Cni
} and Ci = min

{
2(pi − 1)/λmax(Pi), 2(ci,j

−N̄), 2
(

λi,j

γ̄i,j
− k2

i,j+1

4

)
, 2
(

σi,j

2γi,j
− 3
)}

, one can obtain

V̇ ≤ −CV + D (36)

where D = ω∗+N̄
N∑

i=1

z̄2
i,1, and z̄i,1 is a positive constant, satisfies |zi,1| ≤ z̄i,1. The solution

of (36) can be written as

V (t) ≤ V (0)e−Ct +
D

C
(37)

From (37), we can obtain that all the signals in the closed-loop system are bounded.

5. Simulation. Consider the following large-scale nonlinear systems, ẋ1,1 = x1,2 + f1,1(y1) + ∆1,1(y1, y2)
ẋ1,2 = u1 + f1,2(y1) + ∆1,2(y1, y2)
y1 = x1,1

(38)

 ẋ2,1 = x2,2 + f2,1(y2) + ∆2,1(y1, y2)
ẋ2,2 = u2 + f2,2(y2) + ∆2,2(y1, y2)
y2 = x2,1

(39)

where f1,1 = 0, f1,2 = sin(x1,1), f2,1 = 0, f2,2 = sin(x2,1), ∆1,1 = 0, ∆1,2 = sin(x2,1),
∆2,1 = 0, ∆2,2 = sin(x1,1).

The simulation results are shown by Figure 1 and Figure 2. Figure 1 shows the curves
of x1,1 (solid line) and x2,1 (dotted line). Figure 2 shows the curves of u1 (solid line) and
u2 (dotted line).

6. Conclusions. In this paper, a hybrid adaptive NN output-feedback dynamic surface
control design has been proposed for a class of uncertain interconnected nonlinear systems
with unmeasured states. NN state observers have been designed for estimating the unmea-
sured states. Based on the dynamic surface control design technique and serial-parallel
estimation model, new NN adaptive controllers with the composite parameter adaptive
laws have been developed. It has been proved that all the signals of the closed-loop sys-
tem are bounded and the system output can follow the given bounded reference signal.
The proposed control algorithm can not only solve the problems of states unmeasured
and “explosion of complexity”, but also obtain the better identification effect and smaller
tracking error than the previous control methods. Future research will be concentrated
on composite adaptive NN control design for large-scale nonlinear uncertain systems with
input constraints based on the results of this paper.
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Figure 1. The curves of x1,1 (solid line) and x2,1 (dotted line)

Figure 2. The curves of u1 (solid line) and u2 (dotted line)
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