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Abstract. We studied a design method for a multi-rate control system, in which the
sampling interval of the plant output is twice the hold interval of the control input. In con-
ventional control design method, the pre-designed control law is extended without changing
the existing discrete-time control system at a slow-single-rate. In the extended multi-rate
control system, the intersample response can be improved without changing the sampled
output response if the control system has no disturbance. Therefore, this paper proposes
a new multi-rate controller design method that reduces intersample output disturbance
while preserving the sampled output of the pre-designed single-rate control system.
Keywords: Multi-rate control, Disturbance, The sampled output response, The design
polynomial vector

1. Introduction. In digital control, the output signal of a plant observed by a sensor
is discretized at a finite time interval called “sampling interval”. Further, the input
signal of the plant given through an actuator is held for a finite time interval called
“hold interval”. These time intervals are constrained by the performance limitations of
sensors, actuators, samplers (A/D converter), holders (D/A converter), and so on. Thus,
these intervals are not always the same. In such a scenario, the system with a controller
that considers these intervals to have the same value is called a “single-rate” control
system. In this case, because both intervals are set to the larger value, the hardware
performance of the system may not be fully utilized. On the other hand, a system whose
controller considers the sampling and hold intervals individually is called a “multi-rate”
control system. The multi-rate control system achieves higher performance than the
single-rate control system. We studied a design method for a multi-rate control system
based on [1], in which the sampling interval of the plant output is twice the hold interval
of the control input. As Tangirala et al. point out in [2, 3], when the hold interval
is shorter than the sampling interval, multi-rate control systems have an intersample
output oscillation problem, even if the sampled output converges to its reference input.
To solve this problem, we proposed a multi-rate controller design method using integral
compensation or a generalized holder [4]. With this method, the intersample output
oscillation of the multi-rate control system can be reduced without changing the sampled
output of the pre-designed single-rate control system. This paper considered a multi-rate
control system in the presence of output noise. In our previous research, we proposed a
multi-rate controller design method that can design noise-output response to attenuate a
particular disturbance without changing the closed-loop transfer function [5]. However,
this method has a problem in that the sampled output of the obtained multi-rate control
system changes from that of a pre-designed single-rate control system, which is the ideal
output response. This is because this method reduces not only the intersample output
disturbance but also the sampled output disturbance. Therefore, in this paper, we propose
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a new multi-rate controller design method that reduces intersample output disturbance
while preserving the sampled output of the pre-designed single-rate control system. The
effectiveness of our proposed method was confirmed through computer simulations. In the
following section, z−1

1 denotes the backward shift operator, and z−1
j y(k) = y(k − j) and

z−1
j = z−j

1 . A polynomial with shift operators is described as A[z−1
l ], and a polynomial

matrix is described as A[zl].

2. Design of Multi-rate Control System Which Restrains the Output Distur-
bance. In this section, we show that the intersample response is adjustable without
changing the sampled output response by applying the conventional design method [4],
even if the control system has disturbance. This paper considers a multi-rate control
system design for the system that has disturbance d(k) in the output as shown in Figure
1.

plant
+ -

u(t) y(t)

d(t)

Figure 1. Output disturbance error model

A controlled plant of a continuous-time system is transformed into the discrete-time
system. Furthermore, it is assumed that control input u(k) is updated every Tu [s],
whereas the plant output y(k) is sampled every Ts = 2Tu [s]. Then, the controller is
designed as the following two-input single-output discrete-time system by using a lifting
technique (see details in [6]).

A[z−1
2 ](y(k) − d(k)) = B[z−1

2 ]T u(k − 2) (1)

A[z−1
2 ] = 1 + a1z

−1
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2
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−1
2 ] B2[z
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2 ]

]T
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2
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−1
2 + . . . + b2,nz
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u(k) =
[

u(k) u(k + 1)
]T

It is assumed that a stable closed-loop system is achieved by the following multi-rate
control law.

Y [z−1
2 ]u(k) = K[z−1

2 ]r(k) − X[z−1
2 ]y(k) (2)

where r(k) is reference input and

Y [z−1
2 ] =

[
Y1[z

−1
2 ] 0

0 Y2[z
−1
2 ]

]
K[z−1

2 ] =

[
K1[z

−1
2 ]

K2[z
−1
2 ]

]
X[z−1

2 ] =

[
X1[z

−1
2 ]

X2[z
−1
2 ]

]
Using (1) and (2), the closed-loop system is calculated as

y(k) =
z−1
2 YB[z−1

2 ]T K[z−1
2 ]

T [z−1
2 ]

r(k) +
A[z−1

2 ]Yp[z
−1
2 ]

T [z−1
2 ]

d(k) (3)
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where

T [z−1
2 ] = A[z−1

2 ]Yp[z
−1
2 ] + z−1

2 YB[z−1
2 ]T X[z−1

2 ] (4)

YB =
[

B1[z
−1
2 ]Y2[z

−1
2 ] B2[z

−1
2 ]Y1[z

−1
2 ]

]T
(5)

Yp[z
−1
2 ] = Y1[z

−1
2 ]Y2[z

−1
2 ] (6)

The control law (2) is extended as the following to adjust the intersample response
without changing the sampled output response. Then, Uu[z

−1
2 ] and Uy[z

−1
2 ] are determined

not to change the sampled output response [4]. The design polynomial vectors U1[z
−1
2 ]

and U2[z
−1
2 ] are introduced.

Ye[z
−1
2 ]u(k) = K[z−1

2 ]r(k) − Xe[z
−1
2 ]y(k) (7)

where

Ye[z
−1
2 ] = Y [z−1

2 ] − z−1
2 Uu[z

−1
2 ]B[z−1

2 ]T (8)

Xe[z
−1
2 ] = X[z−1

2 ] + Uy[z
−1
2 ]A[z−1

2 ] (9)

Uu[z
−1
2 ] =

[
U1[z

−1
2 ]B2[z

−1
2 ]Y1[z

−1
2 ]

U2[z
−1
2 ]B1[z

−1
2 ]Y2[z

−1
2 ]

]
(10)

Uy[z
−1
2 ] =

[
U2[z

−1
2 ]B2[z

−1
2 ]Y1[z

−1
2 ]

U1[z
−1
2 ]B1[z

−1
2 ]Y2[z

−1
2 ]

]
(11)

Using (7), the closed-loop system is calculated as

y(k) =
z−1
2 YB[z−1

2 ]T K[z−1
2 ]

T [z−1
2 ]

r(k) +
A[z−1

2 ]
(
Yp[z

−1
2 ] − z−1

2 YB[z−1
2 ]T Uu[z

−1
2 ]

)
T [z−1

2 ]
d(k) (12)

So the sampled output of the closed-loop system (3) is not changed, and (12) must
be equal to (3). However, because the influence of disturbance d(k) is not considered,
it cannot be performed by the conventional design method. Therefore, it is necessary to
find the following constraint to preserve the disturbance response of (3):

A[z−1
2 ]Yp[z

−1
2 ] = A[z−1

2 ]
(
Yp[z

−1
2 ] − z−1

2 YB[z−1
2 ]T Uu[z

−1
2 ]

)
(13)

To satisfy (13), it is necessary to satisfy the following condition

z−1
2 YB[z−1

2 ]T Uu[z
−1
2 ] = 0 (14)

Substituting (5) and (10) into (14), we have

z−1
2 YB[z−1

2 ]T Uu[z
−1
2 ] = z−1

2 B1[z
−1
2 ]Y1[z

−1
2 ]B2[z

−1
2 ]Y2[z

−1
2 ]

(
U1[z

−1
2 ] + U2[z

−1
2 ]

)
(15)

From (15), it is determined that (14) is satisfied with U1[z
−1
2 ] +U2[z

−1
2 ] = 0. Therefore,

we define the following condition for U1[z
−1
2 ] and U2[z

−1
2 ].

U1[z
−1
2 ] = −U2[z

−1
2 ] (16)

Using (16), we can adjust the intersample response without changing the sampled
output response when the control system has disturbance. In the case that U1[z

−1
2 ] =

U2[z
−1
2 ], because the extended control law does not change with the non-extended control

law, the output does not change.

3. Numerical Example. A numerical example demonstrates the effectiveness of the
proposed method. In this simulation, a controlled plant G(s), reference input r(k), and
disturbance d(k) are expressed as

G(s) =
1

s2 + 3.2s + 1
(17)

r(k) = 1 (18)

d(t) = −0.2 sin(18t) (19)
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In the following discussion, the disturbance d(t) in (19) is transformed into the discrete
time form given by d(k). It is assumed that control input u(k) is updated every Tu [s] but
the plant output y(k) is sampled every Ts = 2Tu [s]. Then, the controller is designed as
the following two-input single-output discrete-time system by using the lifting technique.

A[z−1
2 ](y(k) − d(k)) = [ B1[z−1

2 ] B2[z−1
2 ] ]u(k − 2) (20)

where

A = 1 − 0.50z−1
2 + 1.7 × 10−3z−2

2

B1 = 0.23 + 3.0 × 10−3z−1
2

B2 = 0.21 + 6.5 × 10−2z−1
2

It is assumed that a stable control of the plant is achieved by using the following
multi-rate control law.[

1 + 9.7 × 10−3z−1
2 0

0 1

]
u(k) =

[
0.89
0.89

]
r(k) −

[
−1.37 − 0.21z−1

2

1

]
y(k) (21)

The steady-state gains of (10) and (11) are calculated as follows using (20) and (21).

Uu[1] =

[
0.2723U1[1]
0.2330U2[1]

]
(22)

Uy[1] =

[
0.2723U2[1]
0.2330U1[1]

]
(23)

Then, we select U1[1] and U2[1] satisfying (16). In this numerical example, we use
simple values that were chosen by trial and error.

U1[1] = −10.0 (24)

U2[1] = 10.0 (25)

Using (24) and (25), the extended control law is calculated as[
Ye11 Ye12
Ye21 Ye22

]
u(k) =

[
K
K

]
r(k) −

[
Xe1
Xe2

]
y(k) (26)

where

Ye11 = 1 + 0.48z−1
2 + 0.16z−2

2 + 3.4 × 10−3z−3
2 + 1.9 × 10−5z−4

2

Ye12 = 0.42z−1
2 + 0.27z−2

2 + 4.4 × 10−2z−3
2 + 4.0 × 10−4z−4

2

Ye21 = −0.53z−1
2 − 1.4 × 10−2z−2

2 − 9.0 × 10−5z−3
2

Ye22 = 1 − 0.47z−1
2 − 0.15z−2

2 − 1.9 × 10−3z−3
2

K = 0.89

Xe1 = 0.68 − 0.57z−1
2 − 0.32z−2

2 − 2.0 × 10−3z−3
2 + 1.0 × 10−5z−4

2

Xe2 = −1.30 + 1.12z−1
2 + 1.1 × 10−2z−2

2 − 5.0 × 10−5z−3
2

The numerical simulation result of the non-extended input given by (21) is shown in
Figure 2, and that of the extended input given by (26) is shown in Figure 3. Furthermore,
outputs that correspond with each of the non-extended and extended inputs are shown
in Figure 4, where the dotted line, solid line, and the circle points indicate the non-
extended intersample output, the extended intersample output, and the sampled output,
respectively. This shows that we can adjust the intersample response without changing
the sampled output response.
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Figure 2. Non-extended input given by (21) for the multi-rate control
system with disturbance
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Figure 3. Extended input given by (26) for the multi-rate control system
with disturbance

4. Conclusions. This paper considered a multi-rate control system in the presence of
output noise. We showed that the intersample response is adjustable without changing the
sampled output response by adding a constraint to the design polynomial vectors, even
when the system has disturbance. However, this study determines the design polynomial
vectors. Therefore, these may not be the optimal parameter values. In our future work,
we plan to include the selection of the most suitable parameter values.
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Figure 4. Comparison of non-extended and extended outputs
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