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Abstract. This paper deals with the admissible problem for a class of Takagi-Sugeno
(T-S) fuzzy singular systems with interval time-varying delay. By decomposing the delay
interval into two unequal subintervals, a simple Lyapunov-Krasovskii functional (LKF) is
constructed and a tighter upper bound of the derivative of LKF can be obtained. Several
new delay-dependent criteria are derived in terms of linear matrix inequalities (LMIs)
to guarantee that the fuzzy singular system is regular, impulse free and asymptotically
stable. Compared with some existing results, the proposed ones give the result with less
conservatism. Finally, two examples are given to show the effectiveness and the improve-
ment of the proposed method.
Keywords: Fuzzy singular system, Interval time-varying delay, Stability, LMIs

1. Introduction. Over the past few decades, a wider class of fuzzy systems that are
described by the singular form have been studied, where the model is the extension of T-S
fuzzy model [1]. T-S fuzzy singular model provides a new way to the analysis and synthesis
of the nonlinear singular system and the time-varying singular system. Meanwhile, time
delays always exist in many dynamical systems and delays are sources of poor stability
and performance of a system [2, 3]. Therefore, lots of stability analysis results [4-16] have
been reported for T-S fuzzy systems or fuzzy singular systems with time-delay. It should
be pointed out that for all of the aforementioned results, the maximum allowable delay
serves as performance index for measuring the conservatism of the conditions obtained.

To reduce the conservativeness of the delay-dependent criteria, the delay-partitioning
method [4-7], convex combination technique [8, 9] and free weighting matrices method
[10, 11] were well used for delayed T-S fuzzy systems. Recently, some work has been
extended to the stability analysis for T-S fuzzy singular systems with time-varying delay.
In [12], the problems of delay-dependent stability were discussed utilizing model trans-
formation techniques. Using free-weight matrix method, [13] discussed the problems of
delay-dependent stability and L2 − L∞ control. Based on delay partitioning approach,
some less conservative stability criteria for fuzzy singular systems with time-varying delay
have been investigated in [14, 15]. By using quadratic method, sufficient conditions on
stability and stabilization are proposed in [16] for uncertain T-S fuzzy singular systems.

Inspired by the methods mentioned above, the objective of this paper is to revisit
the delay-dependent stability analysis for T-S fuzzy singular systems with interval time-
varying delays. Different from [12-16], we decompose the constant part of time-varying
delay [0, τ1] into N segments, and the delay interval [τ1, τ2] is divided into two subintervals
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with an unequal width as [τ1, τρ] and [τρ, τ2], where τρ = τ1 +ρδ, δ = τ2− τ1, 0 < ρ < 1. A
simple LKF is constructed on the intervals, which is with less number of decision variables,
but with more information of the delay. The newly developed conditions are expected to
be less conservative than the previous ones. The rest of this paper is organized as follows.
Section 2 formulates the system descriptions and problem under consideration. Stability
analysis is presented in Section 3. Finally, two numerical examples are given in Section
4 to demonstrate the effectiveness and less conservatism over the existing results. Some
conclusions are made in Section 5.

2. Problem Statement and Preliminaries. Consider a nonlinear singular system with
time delay, which can be represented by the following extended T-S fuzzy singular model:

Eẋ(t) =
r∑

i=1

µi(ξ(t)){Aix(t) + Aτix(t − τ(t))} = A(t)x(t) + Aτ (t)x(t − τ(t))

x(t) =
r∑

i=1

µi(ξ(t))ϕi(t) = ϕ(t), ∀t ∈ [−τ2, 0]

(1)

where x(t) ∈ Rn is the state vector, and ϕi(t) is a vector-valued initial continuous func-
tion defined on the interval [−τ2, 0]. The fuzzy basis functions are given by µi(ξ(t)) =
βi(ξ(t))/

∑r
j=1 βj(ξ(t)), βi(ξ(t)) =

∏p
i=1 Mij(ξ(t)) with Mij(ξj(t)) representing the grade

of membership of ξj(t) in Mij, where ξj(t) is the premise variable. E ∈ Rn×n is a constant
matrix, which may be singular, that is, rank(E) = g ≤ n. Ai, Aτi are constant real matri-
ces of appropriate dimensions. The delay τ(t) is time varying and satisfies τ1 ≤ τ(t) ≤ τ2,
τ̇(t) ≤ d, where τ1, τ2 and d are constants. Next, we will introduce some lemmas to be
needed in the development of main results throughout this paper.

Lemma 2.1. [17] For any positive semi-definite matrices X = (Xij)3×3 ≥ 0, the following
integral inequality holds:

−
∫ t

t−τ(t)

ẋT (s)X33ẋ(s)ds ≤
∫ t

t−τ(t)

β(t, s)

X11 X12 X13

XT
12 X22 X23

XT
13 XT

23 0

 βT (t, s)ds

where β(t, s) =
[
xT (t) xT (t − τ(t)) ẋT (s)

]
.

Lemma 2.2. [18] If a functional V : Cn[−τ, 0] → R is continuous and x(t, ϕ) is a
solution to (1), we define V̇ (ϕ) = lim

h→0+
sup 1

h
(V (x(t + h, ϕ) − V (ϕ))). Denote the system

parameters of (1) as (E, A, Aτ ) =

([
Ig 0
0 0

]
,

[
A11 A12

A21 A22

]
,

[
Aτ11 Aτ12

Aτ21 Aτ22

])
. Assume

that the singular system (1) is regular and impulse free, A22 is invertible, ρ
(
A−1

22 Aτ22

)
< 1.

Then, the system (1) is stable if there exist positive numbers α, µ, ν and a continuous
function, V : Cn[−τ, 0] → R, such that µ∥ϕ1(0)∥2 ≤ V (ϕ) ≤ ν∥ϕ∥2, V̇ (xt) ≤ −α∥xt∥2,
where xt = x(t + θ) with θ ∈ [−τ, 0] and ϕ = [ϕT

1 ϕT
2 ] with ϕ1 ∈ Rq.

3. Main Results. Based on the Lyapunov-Krasovskii stability theorem, the following
result is obtained.

Theorem 3.1. For the given scalars τ1, τ2, d and ρ, system (1) is regular, impulse-free
and asymptotically stable for any time-varying delay τ(t), if there exist matrices P > 0,

Qn > 0, Wn > 0 (n = 1, 2, . . . , N), ΛT (Yij)3×3Λ = Ŷ ≥ 0, ΛT (Zij)3×3Λ = Ẑ ≥ 0,
Λ = diag{E,E, E}, S1 > 0, S2 > 0, S3 > 0, R1 > 0, R2 > 0, such that the following set
of conditions holds:

ET P = P T E ≥ 0, Θi =

[
Θi

11 Θi
12

∗ Θi
22

]
< 0, R1 − Y33 ≥ 0, R2 − Z33 ≥ 0 (2)
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where

Θi
11 =


Θi

1,1 ET W1E · · · 0
∗ Θ2,2 · · · 0
...

...
. . .

...
∗ ∗ · · · Θn,n

 , Θi
12 =


0 0 Θi

1,(N3) 0 Θi
1,(N5)

0 0 0 0 0
...

...
...

...
...

ET WNE 0 0 0 0

 (3)

Θi
22 =


Θ(N1),(N1) Θ(N1),(N2) Θ(N1),(N3) 0 0

∗ Θ(N2),(N2) Θ(N2),(N3) Θ(N2),(N4) 0
∗ ∗ Θ(N3),(N3) Θ(N3),(N4) Θi

(N3),(N5)

∗ ∗ ∗ Θ(N4),(N4) 0
∗ ∗ ∗ ∗ Θ(N5),(N5)

 (4)

with

Θi
1,1 = P T Ai + AT

i P + Q1 + S1 − ET W1E, Θi
1,(N3) = P T Aτi,

Θi
1,(N5) = AT

i ∆, Θi
(N3),(N5) = AT

τi∆, ∆ =
N∑

n=1

h2Wn + ρδR1 + (1 − ρ)δR2

Θn,n = −Qn−1 − ET Wn−1E + Qn − ET WnE,

Θ(N1),(N1) = −QN − WN + S2 + ρδŶ11 + Ŷ13 + Ŷ T
13

Θ(N2),(N2) = S3 − S2 + ρδŶ22 − Ŷ23 − Ŷ T
23 + (1 − ρ)δẐ11 + Ẑ13 + ẐT

13

Θ(N4),(N4) = −S3 + (1 − ρ)δẐ22 − Ẑ23 − ẐT
23, Θ(N5),(N5) = −∆

(5)

Case 1: when τ1 ≤ τ(t) ≤ τρ

Θ(N1),(N3) = ΘT
(N2),(N3) = ρδŶ12 − Ŷ13 + Ŷ T

23

Θ(N2),(N4) = (1 − ρ)δẐ12 − Ẑ13 + ẐT
23, Θ(N3),(N4) = Θ(N1),(N2) = 0

Θ(N3),(N3) = −(1 − d)S1 + ρδŶ11 + Ŷ13 + Ŷ T
13 + ρδŶ22 − Ŷ23 − Ŷ T

23

(6)

Case 2: when τρ ≤ τ(t) ≤ τ2

Θ(N1),(N2) = ρδŶ12 − Ŷ13 + Ŷ T
23, Θ(N2),(N4) = Θ(N1),(N3) = 0

Θ(N2),(N3) = Θ(N3),(N4) = (1 − ρ)δẐ12 − Ẑ13 + ẐT
23

Θ(N3),(N3) = − (1 − d)S1 + (1 − ρ)δ
(
Ẑ11 + Ẑ22

)
+ Ẑ13 + ẐT

13 − Ẑ23 − ẐT
23

(7)

Proof: Since rank(E) = g ≤ n, there must exist two invertible matrices G ∈ Rn×n

and H ∈ Rn×n such that Ẽ = GEH =

[
Ig 0
0 0

]
. Similarly, we define Ãi = GAiH =[

Ãi11 Ãi12

Ãi21 Ãi22

]
, and P̃ = G−T PH =

[
P̃11 P̃12

P̃21 P̃22

]
. Since Θi < 0 and Q1 > 0, S1 > 0, we can

formulate the following inequality easily:

Υi = AT
i P + P T Ai − ET W1E < 0 (8)

Then, pre- and post-multiplying Υi < 0 by HT and H, respectively, (8) yields

Υ̃i = ÃT
i P̃ + P̃ T Ãi − HT ET W1EH =

[
Υ̃11 Υ̃12

∗ ÃT
i22P̃22 + P̃ T

22Ãi22

]
< 0 (9)

Since Υ̃11 and Υ̃12 are irrelevant to the results of the following discussion, the real ex-
pressions of these two variables are omitted here. From Equation (9), it is easy to
see that ÃT

i22P̃22 + P̃ T
22Ãi22 < 0. Since µi(ξ(t)) ≥ 0 and

∑r
i=1 µi(ξ(t)) = 1, we have
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i=1 µi(ξ(t))

(
ÃT

i22P̃22 + P̃ T
22Ãi22

)
< 0. This implies that

∑r
i=1 µi(ξ(t))Ãi22 is nonsingu-

lar. Therefore, the unforced fuzzy singular system (1) is regular and impulse free.
Next, we will show the stability of the system (1). If conditions (2) hold, we have[∑r

i=1 µi

(
P̃ T

22Ãi22 + ÃT
i22P̃22

)
+ S̃1,22 P̃ T

22

∑r
i=1 µiÃτi,22∑r

i=1 µiÃ
T
τi,22P̃22 −(1 − d)S̃1,22

]
< 0 (10)

Then, pre-multiplying and post-multiplying (10) by
[
−ϑT I

]
and its transpose, respec-

tively, (10) yields ϑT S̃1,22ϑ − (1 − d)S̃1,22 < 0, which shows that ρ(ϑ) < 1 holds for all

allowable µi with ϑ =
(∑r

i=1 µiÃi22

)−1(∑r
i=1 µiÃτi22

)
. Now, we define the following

Lyapunov-Krasovskii functional for the unforced fuzzy singular system (1),

V1(xt, t) = xT (t)ET Px(t) +
N∑

n=1

∫ t−(n−1)h

t−nh

xT (s)Qnx(s)ds +

∫ t

t−τ(t)

xT (s)S1x(s)ds

+

∫ t−τ1

t−τρ

xT (s)S2x(s)ds +

∫ t−τρ

t−τ2

xT (s)S3x(s)ds

+

∫ −τ1

−τρ

∫ t

t+θ

ẋT (s)ET R1Eẋ(s)dsdθ

+
N∑

n=1

∫ −(n−1)h

−nh

∫ t

t+θ

ẋT (s)hET WnEẋ(s)dsdθ

+

∫ −τρ

−τ2

∫ t

t+θ

ẋT (s)ET R2Eẋ(s)dsdθ

Then, the time derivatives of V (xt, t) along the trajectories of the system (1) satisfy

V̇ (xt, t) = xT (t)
[
P T A(t) + AT (t)P

]
x(t) + 2xT (t)P T Aτ (t)x(t − τ(t))

+
N∑

n=1

xT (t − (n − 1)h)Qnx(t − (n − 1)h) −
N∑

n=1

xT (t − nh)Qnx(t − nh)

+ xT (t)S1x(t) − (1 − τ̇(t))xT (t − τ(t))S1x(t − τ(t)) + xT (t − τ1)S2x(t − τ1)

− xT (t − τρ)S2x(t − τρ) + xT (t − τρ)S3x(t − τρ) − xT (t − τ2)S3x(t − τ2)

+ ẋT (t)ET

(
N∑

n=1

h2Wn + ρδR1 + (1 − ρ)δR2

)
Eẋ(t)

−
N∑

n=1

∫ t−(n−1)h

t−nh

ẋT (s)hET WnEẋ(s)ds

−
∫ t−τ1

t−τρ

ẋT (s)ET (R1 − Y33)Eẋ(s)ds −
∫ t−τ1

t−τρ

ẋT (s)ET Y33Eẋ(s)ds

−
∫ t−τρ

t−τ2

ẋT (s)ET (R2 − Z33)Eẋ(s)ds −
∫ t−τρ

t−τ2

ẋT (s)ET Z33Eẋ(s)ds (11)

For the case 1, when τ1 ≤ τ(t) ≤ τρ, the following equations are true:

−
∫ t−τ1

t−τρ

ẋT (s)Ŷ33ẋ(s)ds −
∫ t−τρ

t−τ2

ẋT (s)Ẑ33ẋ(s)ds

= −
∫ t−τ(t)

t−τρ

ẋT (s)Ŷ33ẋ(s)ds −
∫ t−τ1

t−τ(t)

ẋT (s)Ŷ33ẋ(s)ds −
∫ t−τρ

t−τ2

ẋT (s)Ẑ33ẋ(s)ds (12)
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By utilizing Lemma 2.1 and the Leibniz-Newton formula, we have

−
∫ t−τ(t)

t−τρ

ẋT (s)Ŷ33ẋ(s)ds ≤ xT (t − τ(t))
[
ρδŶ11 + Ŷ13 + Ŷ T

13

]
x(t − τ(t))

+ 2xT (t − τ(t))
[
ρδŶ12 − Ŷ13 + Ŷ T

23

]
x(t − τρ) (13)

+ xT (t − τρ)
[
ρδŶ22 − Ŷ23 − Ŷ T

23

]
x(t − τρ)

Similarly, we obtain

−
∫ t−τ1

t−τ(t)

ẋT (s)Ŷ33ẋ(s)ds ≤ xT (t − τ1)
[
ρδŶ11 + Ŷ13 + Ŷ T

13

]
x(t − τ1) + 2xT (t − τ1)

×
[
ρδŶ12 − Ŷ13 + Ŷ T

23

]
x(t − τ(t)) (14)

+ xT (t − τ(t))
[
ρδŶ22 − Ŷ23 − Ŷ T

23

]
x(t − τ(t))

−
∫ t−τρ

t−τ2

ẋT (s)Ẑ33ẋ(s)ds ≤ xT (t − τρ)
[
(1 − ρ)δẐ11 + Ẑ13 + ẐT

13

]
x(t − τρ)

+ 2xT (t − τρ) ×
[
(1 − ρ)δẐ12 − Ẑ13 + ẐT

23

]
x(t − τ2)

+ xT (t − τ2)
[
(1 − ρ)δẐ22 − Ẑ23 − ẐT

23

]
x(t − τ2)

(15)

Substituting (12)-(15) into (11), a straightforward computation gives

V̇ (t) ≤ ζT (t)Θ(t)ζ(t) −
∫ t−τ1

t−τρ

ẋT (s)ET (R1 − Y33)Eẋ(s)ds

−
∫ t−τρ

t−τ2

ẋT (s)ET (R2 − Z33)Eẋ(s)ds

(16)

where ζT (t) = [xT (t) xT (t − h) · · · xT (t − τ1) xT (t − τρ) xT (t − τ(t)) xT (t − τ2)]. When
R1−Y33 ≥ 0, R2−Z33 ≥ 0, and τ1 ≤ τ(t) ≤ τρ, the last two terms in (16) are all less than

0. Therefore, if the conditions (2)-(7) hold, there exists α > 0 such that V̇ (xt) < α∥xt∥.
By Lemma 2.2, we conclude that the unforced fuzzy singular system (1) is stable.

For the case 2, when τρ ≤ τ(t) ≤ τ2, the proof can be completed in a similar formulation
to case 1 and is omitted here for simplification. This completes the proof.

Remark 3.1. By dividing the constant part of time-varying delay [0, τ1] into N segments,
and the interval [τ1, τ2] into two unequal variable subintervals [τ1, τρ] and [τρ, τ2], in which
ρ is a tunable parameter, a more general and simple Lyapunov-Krasovskii functional is
constructed. Different from [5-7, 9, 11] and [12-14], we define different energy functional
Qn in each different segment, and by seeking an appropriate parameter ρ, both the infor-
mation of delayed state x

(
t − n

N
τ1

)
(n = 1, 2, 3, . . . , N) and x(t − τρ) can be taken into

account; therefore, the result can further reduce the analysis and synthesis conservatism.

Remark 3.2. In the case when the information of the time-derivative of delay is unknown
or the time-delay is not differentiable, and systems are nonsingular systems, just let S1 =
0, E = In×n and proceed in a similar manner as the previous proof, the criteria can be
obtained from Theorem 3.1. Due to limited space, no more tautology here.

4. Numerical Examples. In this section, two well-known examples are presented to
show the usefulness and effectiveness of the proposed results.
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Example 4.1. Consider a nominal T-S delayed system with two rules as [5], and the
system matrices are

A1 =

[
−2 0
0 −0.9

]
, Aτ1 =

[
−1 0
−1 −1

]
, A2 =

[
−1 0.5
0 −1

]
, Aτ2 =

[
−1 0
0.1 −1

]
The upper delay bounds τ2 derived from [5-7,9,11] and the method proposed in this paper
are tabulated in Table 1 under different values of τ1. It is seen from Table 1 that the
results obtained from Theorem 3.1 (d is unknown, set S1 = 0) are significantly better than
those obtained from other methods. Moreover, the conservatism is gradually reduced with
the increase of N while guaranteeing stability of the considered systems.

Table 1. Comparisons of maximum allowed delay τ1 for Example 4.1 (d unknown)

Method \τ1 0 0.4 0.8 1.0 1.2
[7] Corollary 1 − 1.2647 1.3032 1.3528 1.4214
[5] Theorem 1 (N = 3) 1.2780 1.3030 1.3160 1.3610 1.4250
[11] Corollary 4 − 1.2836 1.3394 1.4009 1.4815
[9] Theorem 1 (N = 3) 1.3800 1.3900 1.4300 − 1.5700
[6] Theorem 4 − 1.5274 1.5361 1.5762 1.6340
Ours C2 (N = 1, ρ = 0.7) 1.4841 1.6743 1.7794 1.7965 1.7805
Ours C2 (N = 2, ρ = 0.7) 1.4839 1.6761 1.8001 1.8403 1.8699
Ours C1 (N = 1, ρ = 0.3) 3.2721 2.5582 2.0346 1.8698 1.7495
Ours C1 (N = 2, ρ = 0.3) 3.2712 2.6034 2.1798 2.0577 1.9769

Example 4.2. Consider a continuous fuzzy singular system composed of two rules and
the following system matrices:

E =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 , A1 =


−3 0 0 0.2
0 −4 0.1 0
0 0 −0.1 0

0.1 0.1 −0.2 −0.2

 , A2 =


−2 0 0 −0.2
0 −2.5 −0.1 0
0 −0.2 −0.3 0

0.1 0.1 −0.2 −0.2



Aτ1 =


−0.5 0 0 0

0 −1 0 0
0 0.1 −0.2 0
0 0 0 0

 , Aτ2 =


−0.5 0 0 0

0 −1 0 0
0 0.1 −0.5 0
0 0 0 0


Supposing that τ(t) satisfies τ1 ≤ τ(t) ≤ τ2 and with τ1 = 2. We apply Theorem 3.1
to calculating the maximal allowable value τ2 that guarantees the asymptotical stability of
the considered system in Cases 1 and 2, respectively. Since the proposed analysis used
a delay-central point method as well as tighter bounding on the time derivative of LKF.

Table 2. Comparisons of maximum allowed delay τ2 for Example 4.2 (τ1 = 2)

Method \d 0.1 0.35 0.6 0.85 0.9 0.95
[12] Theorem 1 3.3623 2.9810 2.6010 1.8330 1.0380 −
[13] Theorem 3 3.3685 3.1560 3.1510 3.0760 2.6750 2.0780
[14] Theorem 1 (N = 2) 3.6761 3.4755 3.3580 3.2425 3.0737 2.8257
Ours C2 (N = 1, ρ = 0.95) 3.7445 3.7553 3.7566 3.7573 3.7550 3.7546
Ours C2 (N = 2, ρ = 0.95) 3.8070 3.8066 3.8064 3.8045 3.8065 3.8072
Ours C1 (N = 1, ρ = 0.45) 5.2484 4.4255 4.1246 4.0834 4.0663 4.0552
Ours C1 (N = 2, ρ = 0.45) 5.3596 4.5894 4.3146 4.2472 4.2140 4.1870
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Therefore, from the comparison results with various d in Table 2, it is easy to see that the
condition in Theorem 3.1 gives less conservative results than those in [12-14].

5. Conclusions. This paper has investigated the asymptotical stability problem for T-S
fuzzy singular systems with interval time-varying delays. Based on the improved delay
partitioning approach, several new stability criteria have been derived by constructing an
appropriate LKF. Finally, some examples have been given to demonstrate the effectiveness
and less conservatism of the proposed method. Further, the delay partitioning method in
this paper can also be used to solve some other interesting issues such as H∞ control, and
fault-tolerant control. Our future work will focus on improving the proposed method to
deal with the above mentioned problems.
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