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Abstract. In this paper, a novel short-term load forecasting (STLF) model based on in-
tegrated incremental extreme support vector regression (II-ESVR) approach is presented.
Firstly an incremental ESVR (IESVR) model is proposed to adapt to incremental learn-
ing which can preserve prior knowledge while learning from new data. The IESVR model
can avoid storing large amounts of historical load data and retraining the whole dataset,
which will reduce the system consumption of computation cost and memory storage. Then
an integrated IESVR network is constructed to handle the instability of IESVR method.
As verified by the experiments, the IESVR model has very fast incremental learning speed
with much lower computational cost. We show attractive experimental results to highlight
the system efficiency and stability by using our integrated IESVR approach to forecast
short-term power load.
Keywords: Short-term load forecasting (STLF), Incremental extreme support vector
regression (IESVR), Incremental learning, Integrated network

1. Introduction. Load forecasting has always been an important issue and played a
vital role in energy management system (EMS), especially in short-term load forecasting
(STLF). The reliable operations of EMS such as system scheduling, system maintenance
and economic dispatch can be carried out more efficiently with accurate information [1].
During the past few decades, researchers have paid much attention to apply batch learning
methods in STLF such as neural network (NN) methods [1], support vector machine
(SVM) methods [2] and extreme learning machine (ELM) methods [3]. Recently, Liu et
al. [4] proposed a new nonlinear SVM method, called extreme support vector machine
(ESVM). ESVM can produce better generalization performance than SVM and ELM in
almost all of the time and run much faster than other nonlinear SVM algorithms with
comparable accuracy. Zhu et al. [5] also extended ESVM model into a regression model,
named ESVR. Actually, in real life applications, the STLF problems can naturally be
viewed as large-scale incremental learning rather than batch learning and the power data
are often collected continuously in real time.

Based on the batch learning methods, many incremental sequential algorithms have
been presented to meet the actual application demand. Stochastic gradient descent back-
propagation (SGD-BP) is one of the most common-used BP algorithms in real sequential
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learning applications [6]. However, SGD-BP suffers a lot from slow training error con-
vergence with the large-scale data. Montana and Parrella [7] proposed an online SVR
method to deal with the new coming data, but it only can be used to learn one by one.
Incremental SVR (ISVR) method [8] is innovatively developed for large-scale traffic flow
prediction by using kernel correlation matrix. Liang et al. [9] and Li et al. [10] intro-
duced online sequential ELM (OS-ELM) and structure-adjustable OS-ELM (SAO-ELM)
methods respectively which have much faster learning speed and produce better gener-
alization performance than other sequential learning algorithms. However, OS-ELM and
SAO-ELM may be over-fitting when the number of hidden nodes is relatively large.

Motivated by the batch-learning process of ESVR, we extend the ESVR into an incre-
mental learning model (IESVR) to deal with large-scale power data from actual power
management systems. It can work for chunk-by-chunk (with fixed or varying size) and
efficiently reduce the computation cost and memory storage. In order to deal with the
instability of the modified IESVR method, an integrated IESVR (II-ESVR) network is
presented. The solutions of IESVR and II-ESVR method are proposed for large-scale on-
line power load forecasting applications to avoid retraining all the data while adding new
data. The experiments show that the IESVR method tends to have better performance
than traditional OS-ELM method with faster training speed. The constructed II-ESVR
network significantly outperforms state-of-the-art methods in stability.

This paper is organized as follows. Section 2 briefly introduces ESVR theory and
extends an incremental learning algorithm for ESVR. Section 3 proposes an integrated
network to deal with the unstable issue of IESVR. In Section 4, the proposed approach is
applied for STLF and evaluation performances are discussed. Conclusions based on this
study are drawn and highlighted in Section 5.

2. Incremental Extreme Support Vector Regression Method.

2.1. Review of extreme support vector machine for regression. Here we briefly
review the model of ESVR. Similar to ELM theory, ESVR is a novel single hidden layer
feedforward network (SLFN) model combined SVM [11] and ELM [12]. For the given
sample data A = {(xi, yi)|xi ∈ Rm}N

i=1, here xi is an m×1 input vector and yi is the target
value. The decision function of ESVR is y = Φ(a, x)∗β +be aiming at approximating any
continuous target function, and the hidden weights can be generated randomly similar to
ELM [12].

Minmize
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where C and ξ respectively represent the user-defined regularization parameter and the
training error.

Based on the Lagrangian theory, the goal of ESVR is equivalent to dealing with the
least square problem [13], and the Lagrange formula can be defined as follows:
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where λ ∈ RN is the Lagrange multiplier according to the LSSVM theory [13]. The KKT
optimality condition theory is applied and can get the final expression of β and b as:
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It can be clearly seen that the ESVR model is developed from SVM and ELM, and takes
advantages of SVM and ELM. Compared to nonlinear SVM, ESVR leads to a simplified
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and extremely fast approach with lower computational cost. However, many real-life
application problems can be more naturally viewed as online rather than batch learning
problems since the training data may arrive continuously. ESVR is inappropriate to deal
with the incremental dataset due to its highly intensive computation.

2.2. Incremental extreme support vector regression method. In this section, we
proposed an incremental learning algorithm for ESVR which is capable of adding new data
to generate an alternative updating regression model. For the whole training process, the
initialization and incremental learning process will be conducted to update the output
weight matrix W . Assume given a sequential training data set A, we first extract a
chunk of training set A0 = {(xi, yi)|xi ∈ Rm}N0

i=1 and N0 > L (representing the number
of hidden nodes) to initialize the ESVR model, and the target of ESVR is to minimize∥∥H0ΦW T

0 − Y0

∥∥ and finally get the optimal output weight W0 =

[
β0

b

]
= Ω0

−1Λ0, where

Y0 = [y1 · · · yN0 ]
T , Ω0 = I/C + HT

0ΦH0Φ ∈ R(L+1)×(L+1) and Λ0 = HT
0ΦY0 ∈ R(L+1)×1.

Now consider the second chunk of training dataset A1 = {(xi, yi)}N0+N1
i=N0+1, where N1

denotes the number of the training data in this chunk. Considering both chunks of A0

and A1, the solution of ESVR model aims at minimizing
∥∥H1ΦW T

1 − Y1

∥∥ and get the
output weight matrix W1:
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For incremental learning, we have to express W1 as a recursive function of W0 and A1

instead of a function of the dataset A0, and then Ω1 can be calculated as:
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Combining the aforementioned Equations (6) and (7), W1 can be expressed as:

W1 = W0 + Ω−1
1 Λ1 (Λ1 = HT

1Φ (Y1 − H1ΦW0)) (7)

Generalizing the previous conclusions, as new data coming in chunk by chunk, a re-
cursive algorithm is presented for updating all the parameters same with the solution of

batch ESVR. When (k+1)th chunk of dataset is received as: Ak+1 = {(xi, yi)}

k+1∑
j=0

Nj

i=

(
k∑
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)
+1

,

where k > 0 and Nj denotes the number of training dataset in the jth chunk, and Nj can
be a fixed or varying value. Therefore, we have the following conclusions:

Ωk+1 = Ωk + HT
(k+1)ΦH(k+1)Φ (8)

Λk+1 = HT
(k+1)Φ

(
Yk+1 − H(k+1)ΦWk

)
(9)

Then the equations for updating Wk+1 can be written as:

Wk+1 = Wk + Ω−1
k+1Λk+1 (10)

Now we have transformed the solution of an ESVR model into an iterative model. For
IESVR, all we need to store in memory is the random input-weight matrix: a ∈ RL×(m+1),
a relatively small matrix Ω0 = R(L+1)×(L+1) and W0 = R(L+1)×N0 , when the new coming
dataset Ak+1 is received, according to the ESVR algorithm and Equation (4), it will retrain
the whole dataset by taking 2(L + 1)2

∑
Ni and 2(L + 1)

∑
Ni operations to compute

HT
(k+1)ΦH(k+1)Φ and HT

(k+1)ΦYk+1, while for IESVR algorithm, it only takes 2(L + 1)2Ni

operations to compute HT
(k+1)ΦH(k+1)Φ and 2(L + 1)Ni operations to compute HT

(k+1)ΦYk+1

referring to Equations (9) and (10), and it can be seen clearly that the computation cost
of IESVR algorithm will only increase linearly consistent with the number of new dataset.
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Following the initialization phase, the incremental learning phase can work on chunk-by-
chunk (with fixed or varying size) as desired without reserving historical data. Therefore,
IESVR algorithm allows us to handle arbitrarily large-scale dataset by successively adding
new data, which can be very useful when the training data cannot be obtained in one
time or the training data is too large to store in memory.

3. Short-Term Load Forecasting Based on Integrated IESVR Method. Accord-
ing to IESVR learning theory, the much fast learning speed and excellent generalization
capacity of IESVR make it very suitable for STLF. However, the random generated pa-
rameters of IESVR and the uncertainty of new coming data can form a crux in the
stability of the forecasting results [2]. In real STLF applications, this issue will make the
forecasting results unacceptable. Considering to enhance the stability, a novel framework
is presented for tackling the instability of STLF problems. The basic idea is to adopt the
boosting learning strategy and construct an integrated network (II-ESVR) to solve this
problem.

Under the integrated network, for the given training dataset A = {(x1, y1), . . . , (xN ,
yN)}, the II-ESVR contains a series of component IESVR predictors {f1, . . . , fP} with the
same structure and parameters, and the output of the kth component IESVR is denoted as
fk(xi). The learning theory for each IESVR model is described in Section 2. In terms of the
unstable issue of each single IESVR model, we apply the Mean-Value method in II-ESVR,
a special case of weighted algorithm. For each component predictors {f1, . . . , fP}, a set of

weights {w1, . . . , wP} should correspond with every predictors where
∑P

k=1 wk = 1 (wk ≥
0) and w1 = w2, . . . = wP . Then we combine the component predictors {f1, . . . , fP}, and
get the average of the output of each IESVR model as the final result of II-ESVR network.
It can be defined as F (xi) = 1

P

∑P
k=1 wkfk(xi).

We expect that II-ESVR network works better than single IESVR model because the
randomly generated parameters make each single IESVR model work in the random re-
gion. Therefore, each single IESVR model may have different adaptive capacities to the
new data. When the data come into the integrated network sequentially, some of IESVR
models may adapt faster and better to new data than others. The integrated IESVR
network can effectively mitigate the instability problems of single IESVR model. In the
II-ESVR network, each single IESVR is trained independently, and all operations can
be performed in parallel. Therefore, parallel computation mode can be applied to re-
ducing computation cost. Specifically, we construct the integrated network by utilizing
incremental learning model IESVR, which can efficiently handle both online learning and
large-scale problem even with millions of data.

The proposed approach aims at forecasting the day-ahead power load based on large-
scale power load data. Thus, the selection of input vector has a great impact on the
accuracy of forecasting model [1,3]. The weekly and monthly load demand patterns of
ISO-New England (www.iso-ne.com) are shown in Figure 1. From Figure 1(a), it can be
easily learned that the changes of power load in 24 hours for different days in a week share
a similar pattern. Besides, from Figure 1(b), the power loads of four weeks in a month
also show periodical trend changes. Hence, to capture the most critical factors, we defined
the input variables including the hour (h) of the day (d) in the week (w), working day
or holiday (0 or 1), real-time temperature (t) and corresponding power load P (w, d, h),
P (w, d, h), P (w, d, h), and Pavg(w, d − 1).
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Figure 1. The weekly and monthly load demand in ISO-New England

4. Experiment.

4.1. Experimental dataset and environments. In this section, we are aiming at fore-
casting day-ahead hourly load and proposing comparative investigations on the ISO-New
England hourly power load dataset and the Australian hourly power load dataset. More
details about the datasets can be found in Table 1. In the experiments, the parameter C
is selected from 2−25 to 2−25 in II-ESVR and IESVR, and the hidden node L is selected
from 100 to 1000 with step 100 in all ELM models [9]. For SGD-BP, the number of
hidden nodes is selected from 30 to 60 with step 10. All the experimental data should be
normalized into [0, 1] before the training process. All the experiments are conducted by
ten rounds to obtain an average performance evaluation.

Table 1. Details of the power load datasets

Dataset #Training data #Testing data #Total data
ISO − NewEngland 35064 17544 52608

Australian 52607 35041 87648

4.2. Validation on IESVR and integrated IESVR networks. The parameter P
(IESVR number) in II-ESVR network is vital to the whole system considering the com-
putational cost, complexity and stability of the network. Figure 2 shows the validation
MAPE with varying single ESVR number. It can be observed that the MAPE will con-
verge to a stable state with the number increasing. Considering the balance of precision
and computation cost, we choose P = 5 with MAPE = 1.30%.

It also illustrates the stability of II-ESVR and IESVR. Experiments on II-ESVR and
single IESVR model are both carried out 10 rounds. II-ESVR network presents convincing
improvement upon accuracy and stability. Besides, it should be mentioned that the
computation time of II-ESVR is around 5 times higher than that of a single IESVR
model. However, since each IESVR model is trained independently, all operations can be
performed in parallel, thus reducing the total computing time.

4.3. Generalization performance on datasets. The forecasted residual errors (MAE)
of II-ESVR, IESVR, OS-ELM and EOS-ELM models are compared on the actual load
of ISO-England from Jun-01 to Jun-15 in 2008 and the actual load of Australia Jun-01
to Jun-15 in 2008. It can be clearly seen in Figure 3 that OS-ELM and EOS-ELM have
shown serious deviations from the actual load in some period. However, II-ESVR is much
stable in both two prediction jobs. More detail results can be obtained from Table 2.
Six methods are evaluated with measure criteria of MAEs, RMSEs and MAPEs. Two
activation functions of Sigmoid and Sin are used, and linear kernel is used in Online-SVR
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Figure 2. The selection of parameter P in II-ESVR network

Figure 3. The forecasted residual errors of Jun-01 to Jun-15, 2008 in
England and Jun-01 to Jun-15, 2008 in Australia

considering the computational cost. Experiment results show that II-ESVR has achieved
best performance in most of these measures on the two public power load dataset. In
all the experiments, IESVR wins the champion in training time while II-ESVR achieves
highest precision. As for II-ESVR network consisting of 5 single IESVR models, the
computation time of II-ESVR is around 5 times of a single IESVR, which is exactly
acceptable by the STLF problem. Compared to OS-ELM and EOS-ELM, our II-ESVR
approach has better generalization and stable performance. SGD-BP suffers much from
local optimization and only works well for one by one, while II-ESVR can work well
for chunk by chunk as desired size. Besides, II-ESVR can work for non-differentiable
activation functions as well. Online-SVR only can work for one by one and has much
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Table 2. Comparison of the experiment results between the six algorithms

Dataset Activation Algorithm Node Time (s) MAE RMSE MAPE

ISO-New
England

Sig

OS-ELM 400 15.51 236.14 330.05 1.58±0.22
EOS-ELM 400 88.65 222.55 321.80 1.52±0.10

IESVR 800 7.29 205.42 285.29 1.40±0.06
II-ESVR 800 36.75 195.05 273.96 1.32±0.02
SGD-BP 50 104.40 224.31 320.35 1.55±0.16

Sin

OS-ELM 400 16.06 231.20 331.80 1.55±0.16
EOS-ELM 400 90.17 215.82 314.56 1.45±0.10

IESVR 800 7.05 206.75 289.70 1.40±0.05
II-ESVR 800 36.25 195.56 275.14 1.32±0.03

linear Online-SVR – >10 h 220.32 320.65 1.52

Australian

Sig

OS-ELM 500 22.85 146.43 196.15 1.74±0.40
EOS-ELM 500 108.56 142.28 188.25 1.70±0.25

IESVR 800 8.07 113.04 151.02 1.32±0.16
II-ESVR 800 42.11 109.62 146.51 1.27±0.03
SGD-BP 50 107.36 114.86 155.45 1.31±0.02

Sin

OS-ELM 500 20.70 179.30 231.68 2.08±0.60
EOS-ELM 500 102.35 170.26 221.65 1.92±0.36

IESVR 800 7.94 127.60 164.85 1.47±0.11
II-ESVR 800 40.75 120.92 156.26 1.39±0.05

linear Online-SVR – >10 h 141.80 189.18 1.70

higher computation cost. The results indicate that Online-SVR is unsuitable for online
STLF application. In summary, II-ESVR can implement STLF applications efficiently
without sacrificing the accuracy and computation cost.

5. Conclusion and Future Work. In this paper, an incremental learning model for
STLF based on II-ESVR approach has been proposed. By combining incremental learn-
ing techniques and integrated network strategy in ESVR, the proposed method can handle
the problem of training incremental data and large-scale data, and it can efficiently im-
prove the forecasting accuracy and overcome instability problem of single IESVR model
by leveraging the advantage of II-ESVR model. Another benefit of the proposed model
is that it has the capability to learn the variation trend of the power load incrementally
without reserving the historical data. The experiment results reveal that the stability and
generalized performance of II-ESVR approach are superior over the other competitive in-
cremental learning algorithms. The proposed II-ESVR method can be efficiently applied
in large-scale power load problem and dramatically reduce the computational cost and
memory storage of energy management systems. Each single IESVR is trained indepen-
dently, therefore, parallel computing technique will be applied to reducing computation
cost in the future.
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