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Abstract. This paper developed an adaptive neural networks (NNs) command filtered
position tracking control approach for induction motors. Neural networks are used to ap-
proximate unknown nonlinear functions and the adaptive command filtered backstepping
is employed to construct controllers. Therefore, the proposed control method can over-
come the problems of “nonlinear systems with parameter uncertainties” and “explosion
of complexity” inherent in the traditional backstepping design and the adaptive neural
controllers guarantee the tracking error can converge to a small neighborhood of the ori-
gin. Then, simulation results illustrate the effectiveness of the proposed approach.
Keywords: Induction motor, Neural networks, Command filtered control, Backstepping

1. Introduction. In the past decades, induction motors (IMs) have been widely used in
industrial applications because of their simple and robust construction, low cost, high reli-
ability and ruggedness. However, the control of IMs is complex due to its highly nonlinear,
multivariable dynamic model. Hence, many control techniques have been developed to
control IMs, such as sliding mode control [1], backstepping control [2] and other control
methods [3]. Backstepping control is considered to be a powerful tool for the design of
controllers for nonlinear systems. However, there are some drawbacks in backstepping
approach. One problem is that certain functions must be linear in the unknown system
parameters. Another limitation is the “explosion of complexity” caused by the repeated
differentiations of virtual input. To overcome these problems, a command filtered back-
stepping technique is proposed to approximate the derivative of the virtual control by
utilizing the output of a command filter at each step of the adaptive backstepping ap-
proach [4]. In addition, NN approximation method has been used in many applications,
mainly by its inherent capability for modeling and controlling highly uncertain, nonlinear
and complex systems [5]. Therefore, NNs can be employed to control the systems which
are too complex to have a precise mathematical model.

Motivated by the above observations, NN approximation-based command filtered adap-
tive backstepping control is proposed for the IMs system in this paper. Compared with
the traditional control methods, the benefits of the presented approach include: 1) The
command filtered control technique is proposed to overcome the problem of “explosion of
complexity”; 2) NNs are used to approximate the unknown nonlinear functions to solve
the problem of the unknown system parameters; 3) The proposed method in this paper
only needs the information of the desired trajectory and its first derivative, which makes
it more suitable for practical applications where higher order derivations of the desired
trajectory cannot be obtained. It is proved that the proposed approach can guarantee that
the tracking error can converge to a small range of the origin and all the closed-loop sig-
nals are bounded. Simulation results illustrate the effectiveness of the proposed approach.
The rest of the paper is organized as follows. Section 2 describes the mathematical model
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of the position drive system for induction motors. The command filtered neural adaptive
backstepping controllers are designed in Section 3. In Section 4, the simulation results
are given. Finally, some conclusions are presented.

2. Mathematical Model of the IM Drive System. Induction motor’s dynamic math-
ematical model can be described in the well-known (d-q) frame as follows [6]:
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where σ = 1 − L2
m

LsLr
. ω, Lm, np, J , TL and ψd denote the rotor angular velocity, mutual

inductance, pole pairs, inertia, load torque and rotor flux linkage, respectively. id and iq
stand for the d-q axis currents. ud and uq are the d-q axis voltages. Rs and Ls mean the
resistance, inductance of the stator. Rr and Lr denote the resistance, inductance of the
rotor. For simplicity, the following notations are introduced: x1 = Θ, x2 = ω, x3 = iq,

x4 = ψd, x5 = id, a1 = npLm

Lr
, b1 = −L2

mRr+L2
rRs

σLsL2
r

, b2 = − npLm

σLsLr
, b3 = np, b4 = LmRr
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,

b5 = 1
σLs

, c1 = −Rr

Lr
, d2 = LmRr

σLsL2
r
. By using these notations, the dynamic model of IM

driver system can be described by the following differential equations:
ẋ1 = x2

ẋ2 = a1
J
x3x4 − TL

J
ẋ3 = b1x3 + b2x2x4 − b3x2x5 − b4

x3x5

x4
+ b5uq

ẋ4 = c1x4 + b4x5

ẋ5 = b1x5 + d2x4 + b3x2x3 + b4
x2
3

x4
+ b5ud

(2)

In this paper, the radial basis function (RBF) neural network will be used to ap-
proximate the unknown continuous function φ(z) : Rq → R as φ̂(z) = ϕ∗TP (z) where
z ∈ Ωz ⊂ Rq is the input vector with q being the neural network input dimension,
ϕ∗ = [ϕ∗

1, . . . , ϕ
∗
n]
T ∈ Rn is the weight vector, P (z) = [p1(z), . . . , pn(z)]

T ∈ Rn is the basis
function vector with n > 1 being the neural network node number, and pi(z) are chosen as

the commonly used Gaussian function in the following form: pi(z) = exp
[
−(z−νi)

T (z−νi)

q2i

]
,

i = 1, 2, . . . , n where νi = [νi1, . . . , νiq]
T is the center of the receptive field and qi is the

width of the Gaussian function. It has been proved in [7] that, for given scalar ε > 0,
by choosing sufficiently large l, the RBF neural network can approximate any continuous
function over a compact set Ωz ∈ Rq to arbitrary accuracy as φ(z) = ϕTP (z) + δ(z) ∀
z ∈ Ωz ⊂ Rq where δ(z) is the approximation error, satisfying |δ(z)| ≤ ε and ϕ is an un-
known ideal constant weight vector, which is an artificial quantity required for analytical
purpose. Typically, ϕ is chosen as the value of ϕ∗ that minimizes |δ(z)| for all z ∈ Ωz.

Lemma 2.1. The command filter [4] is defined as

φ̇1 = ωnφ2 (3)

φ̇2 = −2ζωnφ2 − ωn (φ1 − α1)

If the input signal α1 satisfies |α̇1| ≤ ρ1 and |α̈1| ≤ ρ2 for all t ≥ 0, where ρ1 and ρ2 are
positive constants and φ1(0) = α1(0), φ2(0) = 0, then for any µ > 0, there exist ωn > 0
and ζ ∈ (0, 1], such that |φ1 − α1| ≤ µ, |φ̇1|, |φ̈1| and |

...
φ1| are bounded.
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3. Adaptive Neural Command Filtered Control for IMs. In this section, we will
present an adaptive neural command filtered control for IMs via backstepping. Design
the tracking error variable as

z1 = x1 − x1d, z2 = x2 − x1,c, z3 = x3 − x2,c, z4 = x4 − x4d, z5 = x5 − x3,c (4)

where x1d and x4d are reference signals, the vitural controllers α1, α2 and α3 pass through
the command filter and we will get x1,c, x2,c and x3,c that will be constructed later.

Step 1: For the first equation of (2), consider Lyapunov function candidate as V1 = 1
2
z2
1 ,

and the time derivative of V1 is computed by

V̇1 = z1ż1 = z1 (z2 + x1,c − α1 + α1 − ẋ1d) (5)

Construct the virtual control law α1 as α1 = −k1z1 + ẋ1d. Then (5) can be written as
V̇1 = −k1z

2
1 + z1z2 + z1 (x1,c − α1).

Step 2: Differentiating z2 we get ż2 = a1

J
x3x4 − TL

J
− ẋ1,c. Choose the Lyapunov

function candidate as V2 = V1 + J
2
z2
2 , and then we have V̇2 = V̇1 +z2 (a1x3x4 − TL − Jẋ1,c).

In this paper, due to the parameter TL being bounded in practice system, we assume
the TL is unknown but its upper bound is d > 0. Namely, 0 ≤ TL ≤ d. Obviously,
−z2TL ≤ 1

2ε21
z2
2 + 1

2
ε2
1d

2, where ε1 is an arbitrary small positive constant. Then we can get

V̇2 ≤
1

2
ε2
1d

2 + z2 (x3 + f1) + V̇1 (6)

where f2(Z) = a1x3x4 + 1
2ε21
z2 − x3, Z = [x1, x2, x3, x4, x5]. According to the RBF neural

network approximation property, for given ε2 > 0, there exists an RBF NN ϕT2 P2(Z)
such that f2(Z) = ϕT2 P2(Z) + δ2(Z), where δ2(Z) is the approximation error and satisfies
|δ2| ≤ ε2. Consequently, a straightforward calculation produces the following inequality.
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Construct the virtual control law α2 as α2 = −k2z2 − 1
2
z2 − z1 − 1

2l22
z2θ̂P

T
2 P2 + Jẋ1,c, with

k2 > 0 being a constant and θ̂ is the estimation of the unknown constant θ which will be
specified later. Substituting (7) into (6), we can obtain

V̇2 ≤ −k1z
2
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2
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)
P T
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Step 3: From the third equation of (2) and (3) we have ż3 = ẋ3 − ẋ2,c = b1x3 +
b2x2x4 − b3x2x5 − b4

x3x5

x4
+ b5uq − ẋ2,c. Now choose the Lyapunov function candidate as

V3 = V2 + 1
2
z2
3 . Obviously, the time derivative of V3 is given by

V̇3 ≤ −k1z
2
1 − k2z

2
2 + z1 (x1,c − α1) +

1

2
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where f3(Z) = b1x3 + b2x2x4 − b3x2x5 − b4
x3x5

x4
= ϕT3 P3(Z) + δ3(Z). Similarly, for given

ε3 > 0, we can get
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3 (Z)P3(Z) +
1

2
l23 +

1

2
z2
3 +

1

2
ε2
3 (10)



868 X. WANG, Y. MA, J. YU, L. LIU AND W. LI

The control law uq is designed as uq = 1
b5

(
−k3z3 − 1

2
z3 − z2 + ẋ2,c − 1

2l23
z3θ̂P

T
3 P3

)
. Sub-

stituting (10) and uq into (9), we can obtain
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Step 4: For the reference signal x3d, one has ż4 = ẋ4 − ẋ4d. Choose the Lyapunov

candidate function as V4 = V3 + 1
2
z2
4 . Then the time derivative of V4 is given by

V̇4 ≤
3∑
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Construct the virtual control law α3 as α3 = 1
b4

(−k4z4 + ẋ4d − c1x4). Substituting α3 into

(12) results in V̇4 ≤ V̇3 − k4z
2
4 + b4z4z5 + b4z4 (x3,c − α3).

Step 5: At this step, we will construct the control law ud. Choose V5 = V4 + 1
2
z2
5 .

Then, we have V̇5 = V̇4 +z5 (f5 + b5ud − ẋ3,c), where f5(Z) = b1x5 +d2x4 +b3x2x3 +b4
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3

x4
=

ϕT5 P5(Z) + δ5(Z). Similarly,

z5f5(Z) ≤ 1

2l25
z2
5 ∥ϕ5∥2 P T

5 (Z)P5(Z) +
1

2
l25 +

1

2
z2
5 +

1

2
ε2
5 (13)

We design ud as ud=
1
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T
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)
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||ϕ3||2, ||ϕ5||2}, θ̃ = θ̂ − θ. Furthermore, it can be verified easily that
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Then we choose the Lyapunov function as V = V5 + 1
2r1
θ̃2. And the time derivative of V

is given by
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We choose the adaptive law as

·
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where m1 and li for i = 2, 3, 5 are positive constants.
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Proof: To address the stability analysis of the resulting closed-loop system, substitut-
ing (16) into (15), we have

V̇ ≤ −
5∑
i=1
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From |xi,c − αi| < µ and using the Young’s inequalities, we can get z1(x1,c−α1) ≤ z2
1+ 1

4
µ2,

z2(x2,c − α2) ≤ z2
2 + 1

4
µ2, b4z4(x3,c − α3) ≤ b24

4
µ2 + z2

4 , −θ̃θ̂ ≤ − θ̃2

2
+ θ2

2
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rewritten in the following inequality
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where a = min {2(k1 − 1)/J, 2 (k2 − 1) , 2k3, 2(k4 − 1), 2k5,m1} and b = 1
2
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V (t) ≤
(
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b

a

)
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b

a
≤ V (t0) +

b

a
, ∀t ≥ t0 (19)

All zi (i = 1, 2, 3, 4) and θ̃ belong to the compact set Ω =
{(

zi, θ̃
)
|V ≤ V (t0) + b

a
,

∀t ≥ t0

}
. Namely, all the signals in the closed-loop system are bounded. Especially, from

(19) we can get limt→∞ z2
1 ≤ 2b

a
. By the definitions of a and b, it is proved that to get

a small tracking error we can take ri large but li and εi small enough after giving the
parameters ki and mi.

Remark 3.1. By comparing the command filtered based adaptive fuzzy controllers uq and
ud with the classical backstepping controllers (35) and (39) given in [8], it can be seen
that the classical controllers (35) and (39) are much more complicated than the proposed
fuzzy controllers uq and ud in this paper. The numbers of terms (35) and (39) are much
larger. This drawback was called explosion of complexity in [9].

4. Simulation Results. In order to illustrate the effectiveness of the proposed results,
the simulation is run for the induction motors with the parameters: J = 0.0586Kgm2,
Rs = 0.1Ω, Rr = 0.15Ω, Ls = Lr = 0.0699H, Lm = 0.068H, np = 1. The simulation is
carried out under the zero initial conditions the same as [10]. The reference signals are

taken as x1d = 0.5 sin t+0.3 sin (0.5t) and x4d = 1. TL is chosen as TL =

{
0.5, 0 ≤ t ≤ 5,
1.0, t ≥ 5.

The RBF NNs are chosen in the following way. The NNs ϕT2 P2(Z), ϕT3 P3(Z) and
ϕT5 P5(Z) contain eleven nodes with centers spaced evenly in the interval [−9, 9] and widths
being equal to 2, respectively. The proposed adaptive neural controllers are used to control
the induction motor. The control parameters are chosen as: k1 = 200, k2 = 100, k3 = 100,
k4 = 100, k5 = 200, r1 = 0.05, m1 = 0.5, l2 = l3 = l5 = 0.5, ζ = 0.5, ωn = 500.

Figure 1 displays the reference signals x1 and x1d and Figure 2 shows the reference
signals x4 and x4d. It can be observed from Figure 1 and Figure 2 that the system output
can track the given reference signals well and the tracking errors can converge to a small
neighborhood of the origin. Figure 3 and Figure 4 demonstrate the trajectories of uq and
ud. It can be observed that the controllers are bounded into a certain area that make
them achieved in real applications. We can see a load torque disturbance appearing at
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t = 5s from Figure 3 and Figure 4. However, from the above simulation results, it is
clearly shown that the proposed control method can track the reference signal quite well
even under parameter uncertainties and load torque disturbance.

5. Conclusions. Neural network-based adaptive command filtered backstepping appr-
oach has been presented for the position tracking control of induction motors in this
paper. This method can overcome the problem of “explosion of complexity” inherent
in the traditional backstepping design. The designed controllers guarantee the tracking
error can converge to a small neighborhood of the origin. Simulation results testify its
effectiveness in the IM drive systems. In the future work, we will focus on the proposed
control algorithm applied to the realistic industrial applications.
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