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Abstract. In this paper, a four-dimensional reaction-diffusion system of SI epidemic
model with spatial diffusion and feedback controls is proposed. The well-posedness of the
diffusive system is established and the permanence of the system is obtained by apply-
ing the comparison principle. Then, the global stability of two nonnegative equilibria is
investigated by constructing suitable Lyapunov functions respectively. It is shown that
the disease-free equilibrium is globally asymptotically stable when the basic reproduction
number R0 is smaller than one and the endemic equilibrium is globally asymptotically
stable when R0 is larger than one. Finally, some numerical simulations are given to
illustrate the theoretical results.
Keywords: SI epidemic model, Reaction-diffusion system, Feedback control, Perma-
nence, Stability

1. Introduction. Recently, Chen and Sun [1] have considered the following SI epidemic
model with feedback controls:

dS(t)

dt
= S(t)(r − aS(t) − bI(t) − c1u1(t)),

dI(t)

dt
= I(t)(bS(t) − µ − fI(t) − c2u2(t)),

du1(t)

dt
= −e1u1(t) + b1S(t),

du2(t)

dt
= −e2u2(t) + b2I(t),

(1)

where S(t) and I(t) denote the susceptible and infected individuals, respectively; u1(t)
and u2(t) are feedback control variables; all the coefficients are positive constants, r is the
recruitment rate of susceptible population, µ is the death rate of the infected population,
b is the transmission rate when susceptible individuals contact with infectious, and f
denotes the intraspecific competition; bi, ci and ei (i = 1, 2) are control parameters. By
introducing such indirect control variables, one may successfully alter the positions of
positive equilibrium and retain its stability, see [2, 3].

Most of the works on epidemic models mainly focus on the homogeneous population,
that is, all individuals are homogeneously mixed. In fact, spatial effects cannot be ne-
glected in studying the spread of epidemics due to the large mobility of people [4, 5].
However, there have been few results on the combined influences of spatial diffusions and
feedback controls. For this reason, we assume that these two kinds of people can move
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freely and consider the reaction-diffusion system of the form

∂S
∂t

= d1
∂2S
∂x2 + S(r − a − bI − c1u1), x ∈ (0, lπ), t > 0,

∂I
∂t

= d2
∂2I
∂x2 + I(bS − µ − fI − c2u2), x ∈ (0, lπ), t > 0,

∂u1

∂t
= d3

∂2u1

∂x2 − e1u1 + b1S, x ∈ (0, lπ), t > 0,

∂u2

∂t
= d4

∂2u2

∂x2 − e2u2 + b2I, x ∈ (0, lπ), t > 0,

∂S(x,t)
∂x

= ∂I(x,t)
∂x

= ∂u1(x,t)
∂x

= ∂u2(x,t)
∂x

= 0, x = 0, lπ, t > 0,

S(x, 0) = φ1(x) ≥ 0, I(x, 0) = φ2(x) ≥ 0, x ∈ [0, lπ],

u1(x, 0) = φ3(x) ≥ 0, u2(x, 0) = φ4(x) ≥ 0, x ∈ [0, lπ],

(2)

where di (i = 1, 2, 3, 4) are diffusion coefficients, and the initial functions φi(x) (i =
1, 2, 3, 4) are Hölder continuous in [0, lπ]×[0, +∞). The homogeneous Neumann boundary
condition means that the four variables have zero flux across the boundary.

It is of interest to study whether spatial diffusions change the dynamic properties of SI
epidemic model with feedback controls. Motivated by these factors, the aim of this paper
is to investigate the permanence and global stability of system (2). The methods used
here can also be applicable to other feedback control models. The results here are novel,
and to our knowledge, there are no similar results published for this diffusive epidemic
model with feedback controls in existing literature. Based on these results, we may also
give some useful suggestions to government or medical institution.

This paper is organized as follows. In Section 2, we study the well-posedness for system
(2). In Section 3, we discuss the global attractor and permanence of solutions. In Section
4, we construct Lyapunov functions to investigate the global stability of two equilibria.
Finally, some numerical examples and a brief discussion are given in Section 5.

2. Preliminaries. In this section, we establish the existence, uniqueness, positivity and
boundedness of solutions of (2) because this model describes the evolution of susceptible
and infected population. Hence, the variables should remain nonnegative and bounded.

Theorem 2.1. For system (2), there exists a unique solution defined on [0, +∞) and this
solution remains nonnegative and uniformly bounded for all t ≥ 0.

Proof: By standard existence theory in [6, 7], it is easy to establish the local existence
of the unique solution (S(x, t), I(x, t), u1(x, t), u2(x, t)) of system (2) for x ∈ [0, lπ] and
t ∈ [0, Tmax), where Tmax is the maximal existence time for solutions of (2).

We can also verify that 0 = (0, 0, 0, 0) and M1 = (M1, M2,M3,M4) are a pair of
coupled lower-upper solutions to problem (2), where M1 = max

{
r
a
, ∥φ1∥∞

}
, M2 =

max
{

bM1

f
, ∥φ2∥∞

}
, M3 = max

{
b1M1

e1
, ∥φ3∥∞

}
, M4 = max

{
b2M2

e2
, ∥φ4∥∞

}
.

According to the results in [6], we can easily derive that system (2) has exactly one
solution U(x, t) = (S(x, t), I(x, t), u1(x, t), u2(x, t)) in [0, lπ] × [0, +∞) satisfying 0 ≤
U ≤ M. Then the solutions are uniformly bounded and we deduce that tmax = +∞.
This proves the theorem.

As we know, spatial diffusion does not change the existence of constant equilibria. We
restate the useful results from [1]. The basic reproduction number of the infection is given

by R0 = (br−aµ)e1

b1c1µ
. The following lemma presents the sufficient conditions for existence and

uniqueness of an endemic equilibrium.

Lemma 2.1. (1) If R0 ≤ 1, then system (2) has the unique disease-free equilibrium
E0 = (S0, 0, u0

1, 0), where S0 = e1r
ae1+b1c1

, u0
1 = b1r

ae1+b1c1
.



ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.7, NO.4, 2016 859

(2) If R0 > 1, then system (2) has the endemic equilibrium E∗ = (S∗, I∗, u∗
1, u

∗
2), where

S∗ = be2µ+r(e2f+b2c2)
Ae2

, I∗ = be1r−ae1µ−b1c1µ
Ae1

, A = b2 +
(
a + b1c1

e1

)(
f + b2c2

e2

)
, u∗

1 = b1S∗

e1
and

u∗
2 = b2I∗

e2
.

3. Global Attractor and Permanence. We first show that R =
[
0, r

a

]
×

[
0, br

af

]
×[

0, d1r
ae1

]
×

[
0, bd2r

ae2f

]
is a global attractor for all solutions of system (2); in other words, any

nonnegative solution (S(x, t), I(x, t), u1(x, t), u2(x, t)) of (2) lies in R as t → +∞ for all
x ∈ (0, lπ).

Theorem 3.1. (Dissipativeness) Let (S, I, u1, u2) be the unique solution of system (2).
Then, for any x ∈ [0, lπ], we have

lim sup
t→+∞

S(x, t) ≤ r

a
, lim sup

t→+∞
I(x, t) ≤ br

af
,

lim sup
t→+∞

u1(x, t) ≤ d1r

ae1

, lim sup
t→+∞

u2(x, t) ≤ bd2r

ae2f
.

Proof: From the first equation of system (2) and the positivity of solutions, we can
obtain

∂S

∂t
− d1

∂2S

∂x2
≤ S(r − aS) for (x, t) ∈ (0, lπ) × [0, +∞).

The comparison principle of parabolic equations in [7] shows that

lim sup
t→+∞

S(x, t) ≤ r

a
.

Then for an arbitrary ε1 > 0, there exists T1 ∈ (0, +∞) such that S(x, t) ≤ r
a

+ ε1 for
(x, t) ∈ (0, lπ) × [T1, +∞). Thus, by the second equation of system (2), we get

∂I

∂t
− d2

∂2I

∂x2
≤ I

[
b
(r

a
+ ε1

)
− fI

]
.

This implies lim supt→+∞ I(x, t) ≤ br
af

by the arbitrary of ε1 and the standard comparison

principle of parabolic equations. Similarly, we can also have

lim sup
t→+∞

u1(x, t) ≤ d1r

ae1

, lim sup
t→+∞

u2(x, t) ≤ bd2r

ae2f
.

The proof is complete.

Definition 3.1. System (2) is said to be not persistent if

min

{
lim inf
t→+∞

S(x, t), lim inf
t→+∞

I(x, t), lim inf
t→+∞

u1(x, t), lim inf
t→+∞

u2(x, t)

}
= 0

for some of its nonnegative solutions. Otherwise, system (2) is said to be persistent.

Definition 3.2. System (2) is said to be permanent if

m ≤ lim inf
t→+∞

S(x, t) ≤ lim sup
t→+∞

S(x, t) ≤ M, m ≤ lim inf
t→+∞

I(x, t) ≤ lim sup
t→+∞

I(x, t) ≤ M,

m ≤ lim inf
t→+∞

u1(x, t) ≤ lim sup
t→+∞

u1(x, t) ≤ M, m ≤ lim inf
t→+∞

u2(x, t) ≤ lim sup
t→+∞

u2(x, t) ≤ M

for some of its nonnegative solutions, where m and M are positive constants.

In the next, we shall discuss the non-persistence and permanence of system (2).

Theorem 3.2. If br ≤ aµ, then system (2) is not persistent.
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Proof: From the proof of Theorem 3.1, we have more precise estimate as follows:

∂I

∂t
− d2

∂2I

∂x2
≤ I

[
b
(r

a
+ ε1

)
− µ − fI

]
,

which yields that

lim sup
t→+∞

I(x, t) ≤ br − aµ

af
≤ 0.

Thus system (2) is not persistent due to Definition 3.2. This completes the proof.

Theorem 3.3. Assuming that be2r (ae1f − b2e1 − c1d1f) > ae1 (ae2fµ + bc2d2r), then
system (2) is permanent.

Proof: From Theorem 3.1, for an arbitrary ε2 > 0, there exists a common T2 > 0 such
that

S(x, t) ≤ r

a
+ ε2, I(x, t) ≤ br

af
+ ε2, u1(x, t) ≤ d1r

ae1

+ ε2, u2(x, t) ≤ bd2r

ae2f
+ ε2

in (0, lπ) × [T2, +∞). Then we have

∂S

∂t
− d1

∂2S

∂x2
≥ S

[
r −

(
b2r

af
+ ε2

)
− c1

(
d1r

ae1

+ ε2

)
− aS

]
,

and

lim inf
t→+∞

S(x, t) ≥
r −

(
b2r
af

+ ε2

)
− c1

(
d1r
ae1

+ ε2

)
a

.

Under the assumption and arbitrariness of ε2, we can obtain

lim inf
t→+∞

S(x, t) ≥ r (ae1f − b2e1 − c1d1f)

a2e1f
> 0.

For appropriately small ε3 > 0, there exists T3 > T2 such that

S(x, t) ≥ r (ae1f − b2e1 − c1d1f)

a2e1f
− ε3 > 0 for (x, t) ∈ (0, lπ) × [T3, +∞).

Furthermore, we have

∂I

∂t
− d2

∂2I

∂x2
≥ I

[
br (ae1f − b2e1 − c1d1f)

a2e1f
− bε3 − µ − c2

(
bd2r

ae2f
+ ε2

)
− fI

]
,

and

lim inf
t→+∞

I(x, t) ≥
br(ae1f−b2e1−c1d1f)

a2e1f
− bε3 − µ − c2

(
bd2r
ae2f

+ ε2

)
f

.

By the continuity as ε2 → 0 and ε3 → 0, we obtain

lim inf
t→+∞

I(x, t) ≥ br (ae1f − b2e1 − c1d1f)

a2e1f 2
− µ

f
− bc2d2r

ae2f 2

According to similar procedure, we can also have

lim inf
t→+∞

u1(x, t) ≥ b1r (ae1f − b2e1 − c1d1f)

a2e2
1f

> 0,

lim inf
t→+∞

u2(x, t) ≥ bb2r (ae1f − b2e1 − c1d1f)

a2e1e2f2
− b2µ

e2f
− bb2c2d2r

ae2
2f

2
> 0.

Combining dissipativeness and definition of permanence, we can conclude that system (2)
is permanent under the assumption. The proof is complete.
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4. Global Stability. In this section, we discuss the global stability of nonnegative equi-
libria by constructing suitable Lyapunov functions.

Theorem 4.1. If R0 < 1, then the disease-free equilibrium E0 is globally asymptotically
stable.

Proof: Assume that (S(x, t), I(x, t), u1(x, t), u2(x, t)) is a positive solution of system
(2) and consider the following Lyapunov function:

W (t) =

∫
Ω

[(
S − S0 − S0 ln

S

S0

)
+ I +

c1

2b1

(
u1 − u0

1

)2
+

c2

2b2

u2
2

]
dx.

Calculating the derivative along the solutions of (2), we have

dW (t)

dx
=

∫
Ω

[
∂S

∂t
− S

S0

∂S

∂t
+

∂I

∂t
+

c1

b1

(
u1 − u0

1

) ∂u1

∂t
+

c2

b2

u2
∂u2

∂t

]
dx

=

∫
Ω

[
d1

S − S0

S
∆S + d2∆I +

c1d3

2b1

(
u1 − u0

1

)
∆u1 +

c2d4

2b2

u2∆u2

]
dx

+

∫
Ω

[
(S − S0)

(
−a

(
S − S0

)
− bI − c1

(
u1 − u0

1

))
+

c2

b2

(−eu2 + b2I)

+I (bS − µ − fI − c2u2) +
c1

b1

(
u1 − u0

1

) (
−e1

(
u1 − u0

1

)
+ b1

(
S − S0

))]
dx

, I1 + I2.

According to the Green’s formula and zero-flux boundary condition, we can obtain

I1 = −
∫

Ω

S0|∇S|2

S2
dx −

∫
Ω

c1d3u1

2b1

u0
1|∇u1|2

u2
1

dx ≤ 0.

On the other side, we have

I2 =

∫
Ω

[
−a

(
S − S0

)2 − I

(
µ − bre1

ae1 + b1c1

)
− c1e1

b1

(
u1 − u0

1

)2 − c2e2

b2

u2
2

]
dx.

Then we have from the assumption R0 < 1 that I2 ≤ 0. It is obvious that W ′(t) ≤ 0 and
the equality holds if and only if S = S0, I = 0, u1 = u0

1 and u2 = 0. Thus, the proof is
completed by LaSalle’s invariance principle.

Theorem 4.2. If R0 > 1, then the endemic equilibrium E∗ is globally asymptotically
stable.

Proof: We construct the following Lyapunov function

L(x, t)=

∫
Ω

[
S − S∗ − S∗ ln

S

S∗ +
c1

2b1

(u1 − u∗
1)

2 +I − I∗ − I∗ ln
I

I∗ +
c2

2b2

(u2 − u∗
2)

2

]
dx.

Using the similar techniques in the proof of Theorem 4.1, we get

dL

dt
= −

∫
Ω

(
d1S

∗|∇S|2

S2
+

d1I
∗|∇I|2

I2
+

c1d3u
∗
1

b1u1

|∇u1|2 +
c2d4u

∗
2

b2u2

|∇u2|2
)

dx

−
∫

Ω

[
a (S − S∗)2 + f (I − I∗)2 +

c1e1

b1

(u1 − u∗
1)

2 +
c2e2

b2

(u2 − u∗
2)

2

]
dx.

Hence, dL
dt

≤ 0. It follows from LaSalle’s invariance principle that the positive equilibrium
E∗ is globally asymptotically stable when R0 > 1.
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Figure 1. The disease-free equilibrium E0 is globally stable when R0 < 1.

Figure 2. The endemic equilibrium E∗ is globally stable when R0 > 1.

5. Numerical Examples and Conclusions. In this section, we give some numerical
simulations for system (2). According to the positivity of parameters in previous assump-
tions, we choose the coefficients as [1] and set r = 0.6, a = e2 = 2, b = f = b2 = c2 = 1,
µ = 0.25 and l = 1. When e1 = 2 and b1 = c1 = 1, we obtain R0 = 0.8 < 1 and the
disease-free equilibrium E0 = (0.24, 0, 0.12, 0) is globally asymptotically stable (see Figure
1). This means that the disease will eventually vanish when the parameters e1, b1 and c1

are suitably selected. If e1 = 4 and b1 = c1 = 0.5, then R0 = 6.4 > 1 and the endemic
equilibrium E∗ = (0.2809, 0.02061, 0.03511, 0.01031) is globally asymptotically stable (see
Figure 2). Practically speaking, when the control decrease coefficient e1 is larger and the
feedback control coefficients b1 and c1 are slightly smaller, the disease will not be extinct.
Moreover, the number of healthy and infected individuals will achieve positive constant
steady states fleetly.

In this paper, we have proposed a diffusive SI epidemic model with feedback controls
by introducing the spatial diffusion and zero-flux boundary condition. It is shown that
the disease-free equilibrium and endemic equilibrium are globally asymptotically stable
when R0 < 1 or R0 > 1 respectively. This means that there is no Turing pattern and self-
diffusion has no influence on the global stability. More precisely, the healthy people would
be to keep away from the infected ones [8, 9]. The movement of susceptible people is in the
direction of lower concentration of the infected, which can be mathematically described
by cross diffusion. To explore more complex dynamics of system (2), in the future, we
shall take into account the cross-diffusion factor and discuss the pattern formation.
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