
ICIC Express Letters
Part B: Applications ICIC International c⃝2016 ISSN 2185-2766
Volume 7, Number 4, April 2016 pp. 805–811

GPU-BASED RENDERING USING DISCRETE DIFFUSION MODEL
AND CUBE ENVIRONMENT MAPPING

Gang Li1,∗ and Yifan Guo2

1College of Mathematics and Information Science
Zhengzhou University of Light Industry

No. 5, Dongfeng Road, Zhengzhou 450002, P. R. China
∗Corresponding author: ligangzzuli@163.com

2Department of Computer
Henan Technical College of Construction

Zhengzhou 450000, P. R. China

Received October 2015; accepted January 2016

Abstract. Realistic real-time rendering of translucent materials poses a challenging
problem as a result of both requirements of photo-realistic and real-time rendering. In
this paper we present GPU-based (Graphics Processing Unit) rendering using discrete
diffusion model and cube environment mapping. We derive the discrete evaluation of
diffusion model to give the photo-realistic rendering and fast GPU evaluation easily.
Considering the influence to materials appearance from environment light, we design
cube environment mapping on GPU and give a real-time realistic rendering. The result
shows that we could acquire realistic appearance of translucent materials such as soft
shadow and appearance details, which is more naturally integrated into the surrounding
light.
Keywords: Real-time rendering, Discrete diffusion model, Cube environment mapping,
GPU evaluation

1. Introduction. Realistic rendering of translucent materials poses a challenging prob-
lem in computer graphics. Many materials for realistic image synthesis, such as plants
and fruits, beverages and food, many liquids and marble, exhibit Strong Subsurface Scat-
tering (SSS) effects. Also when these materials are in some real scenes, their appearances
will be influenced by surrounding light. So we have to simulate these effects to give a
realistic rendering.

Since the material scatters light beneath the surface, we could in principle have to
do a volume rendering, but the fact that we only need to worry about light emergent
on the surface means that we can use an approximate analytical expression to describe
the subsurface scattering under the surface. Several classic methods to simulate the
subsurface scattering have been presented such as Dipole model [1], raytracing [2], multi-
dipoles model [3] and spectral shading model [4]. However, these methods have to use
long computation time to render the subsurface scattering. With the introduction of new
hardware and software in computer graphics, the computational power has risen to a new
level, where effects previously captured by photo-realistic rendering methods only, can be
simulated in real-time applications as well.

Recently, some real-time algorithms to simulate SSS have already been introduced.
Gauss kernel function [5], texture-space rendering [6] and screen-space rendering [7] are
milestone algorithms among the methods of realistic rendering on GPU. However, these
methods focus on the rendering using simple point or area lights for illuminating. In-
stead of using a certain number of light sources for illuminating a scene, it can be much
more realistic to use environment lighting. Under complex environment lighting repre-
sented as Spherical Radial Basis Functions (SRBFs), Xu et al. [8] present an interactive

805

806 G. LI AND Y. GUO

algorithm for hair rendering and appearance editing. More recently, Kei et al. [9] pro-
pose an interactive rendering method of cloth fabrics under environment lighting; their
GPU implementation enables interactive rendering of static cloth fabrics with dynamic
viewpoints and lighting. Dahlin et al. [10] present a GPU-based rendering system based
on the NVIDIA OptiX framework, enabling real-time raytracing of scenes illuminated
with video environment maps. However, the rendering speed related above still needs to
be improved to meet increasing requirements of faster interactive applications. In these
applications such as 3D real-time games, the main challenge of rendering is not only to
approximate the complex SSS to give a realistic looking appearance but also it should be
quickly implemented and easily integrated with existing GPU pipelines.

We are motivated by the requirement of speed and implementation, and seek to render
translucent objects in the real scene represented by environment map. We deduce the
discretization of diffusion model, and give a realistic rendering for GPU implementation.
Real world scenes usually have much more complex lighting conditions and environment
mapping is an effective technique to capture complex lighting in GPU texture. So using
GPU fragment shader, we simply look up the color of the environment in the direction
of the viewing ray. Finally we can acquire a faster realistic rendering and give an easier
implementation.

The rest of this paper is organized as follows. Discretization of diffusion model for
GPU implementation is given in Section 2. Then fast cube environment mapping on GPU
is showed in Section 3. Finally, experimental results are discussed in Section 4, and
conclusions are drawn in Section 5.

2. Discretization of Diffusion Model for GPU Implementation. The BSSRDF
(Bidirectional Scattering Surface Reflectance Distributed Function) can determine the
light transport between any two rays intersecting a surface. As described in [1], the
BSSRDF relates the differential reflected radiance, dLr (at xo in direction −→ωo) to the
differential incident flux, Φi (at xi from direction −→ωi) and can be written as:

S (xi,
−→ωi , xo,

−→ωo) =
dLr (xo,

−→ωo)

dΦi (xi,
−→ωi)

(1)

From Equation (1), when light, with a direction −→ωi , hits point xi on a surface, the BSSRDF
determines how much of this light is reflected from (another) point xo in direction −→ωo.

To find the reflected radiance, Lr, it is necessary to integrate Equation (1) over both
area A and incoming directions

Lr (xo,
−→ωo) =

∫
A

∫
2π

S (xi,
−→ωi , xo,

−→ωo) Li (xi,
−→ωi) (−→ωi · N) d−→ωidA(xi) (2)

In highly scattering media, the radiation may scatter many times, which is known as
multiple scattering as shown in Figure 1. Each scattering event blurs the light distribution;
as a result the light distribution becomes quite uniform and tends to become isotropic.

Figure 1. Multiple scattering

ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.7, NO.4, 2016 807

Multiple scattering plays a more crucial component in scattering events and mainly affects
appearance of media.

Hence, we have to model the multiple scattering to give the complex effects of illumina-
tion on translucent objects. As we all know that the simulation of multiple scattering via
traditional methods such as raytracing [2] is computation-intensive and time-consuming.
Even the raytracing is improved by GPU rendering pipeline [10], the speed is still relatively
low.

Considering the fast computation and real-time rendering, in this paper, we focus on
simplifying the BSSRDF diffusion model and deduce the discretization of diffusion model
for GPU implementation easily. Based on the reflected radiance according to Equation
(2), the luminance calculation of multiple scattering could be acquired as

Lr (xo,
−→ωo) =

∫
A

∫
2π

Smultiple (xi,
−→ωi , xo,

−→ωo) Li (xi,
−→ωi) (−→ωi · N) d−→ωidA(xi) (3)

where Smultiple is an item of multiple scattering, which can be evaluated further as

Smultiple =

∫
A

∫
2π

Fr (−→ωo) Rd(xi, xo)Fr (−→ωi)

π
d−→ωidA(xi)

=

∫
A

Fr (−→ωo) Rd(xi, xo)

π

∫
2π

Fr (−→ωi) d−→ωidA(xi) (4)

where Fr is the Fresnel reflectance term which computes the fraction of light reflected
from an optically flat surface. Rd is the diffusion profile which could be simulated by
sum-of-Gaussians in this paper.

Combining Equation (3) with Equation (4), we can acquire

Lr (xo,
−→ωo) =

Fr (−→ωo)

π

∫
A

Rd(xi, xo)I (xi,
−→ωi) dA(xi) (5)

where I is the irradiance map which can be represented as

I (xi,
−→ωi) =

∫
2π

Fr (−→ωi) Li (xi,
−→ωi) (−→ωi · N) d−→ωi (6)

As we all know that the rendering object is represented by the discrete 3D mesh and
GPU rendering is for point based rendering, so we finally give the discretization of Equa-
tion (5) for GPU computation as follows:

Lr (xo,
−→ωo) =

Fr(ωo)

π

∑
xi∈V S

Rd(xi, xo)I(xi)M(xi) (7)

where V S is the point set of 3D mesh model. M is the micro-facet distribution.
Using sum of four Gausses with variances vi and weights wi, we can approximate the

Rd(r) as in

Rd(r) =
4∑

i=1

ωiG(υi, r) (8)

where r is the distance between xi and xo. The Gaussian of variance υ is defined as
follows.

G(υ, r) =
1

2π
e−

r2

2υ (9)

Then we multiply the diffusion profile by an original irradiance map I to get a realistic
appearance as follows.

I ∗ Rd(r) = I ∗

(
4∑

i=1

ωiG(υi, r)

)
=

4∑
i=1

ωiI ∗ G(υi, r) (10)

808 G. LI AND Y. GUO

Because Gauss functions are simultaneously separable and radial symmetric, Gauss
convolution at a wider stage can be computed from the result of a previous Gauss convo-
lution, so the convolution of any two Gausses is another Gaussian as in

G(υ1, r) × G(υ2, r) = G(υ1 + υ2, r) (11)

Finally, using this special feature of Gauss convolution, we can implement a fast com-
putation and give real-time rendering via GPU.

3. Fast Cube Environment Mapping on GPU. Environment lighting is the lighting
conditions surrounding the rendered object. In OpenGL when implementing environment
lighting, there is a special kind of texture called cube map, which stores the images of
distant environment. A cube map consists of six faces, and each of them has a 2D texture
shown in Figure 2. We can sample a point on the cube with a 3D vector in order to get
environment light intensity in a certain direction.

(a) Cube map (b) Teapot model in cube map

Figure 2. 3D model in cube environment map

Traditionally, considering one environment map with k texels, each texel can be thought
of being a single light source. Therefore, for each surface point of the object the diffuse
component can be computed as follows:

diffuseLight = C ×
∑

j=1...k

max (0, Dj · N) Lj (12)

where Lj is the light direction of texel j. N is the surface normal. Dj is the light direction.
C is the surface albedo of diffuse surface.

It is obvious that if the number of texels k is large, computation of this sum in Equation
(12) for each point of the surface of the object is really expensive. In this paper, we give
a solution of this problem that we implement the precomputation of diffuse reflection
via cube map texture of OpenGL. Our improvement is based on observations: firstly all
surfaces with normal direction N will return the same value for the sum, and then the sum
is dependent on just the lights in the scene and the surface normal. So we precompute the
sum for any normal N and store result in a second environment map, indexed by surface
normal. The second environment map is called diffuse irradiance environment map, which
allows to illuminate translucent objects with arbitrarily complex lighting environments
with quick lookup for cube map texture on GPU.

The key shader of CubeMapping.vert and CubeMapping.frag when implementing fast
cube environment mapping on GPU is as follows.

ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.7, NO.4, 2016 809

1 /∗ Key GPU Shader o f CubeMapping . v e r t ∗/
2 g l P o s i t i o n=pvmMatrix∗vPos ; /∗ Vertex Pos i t i on to Cl ip Space ∗/
3 t ex coord=vTexCoord . s t ;
4 vec3 e=normal ize (vec3 (ModelViewMatrix∗vPos)) ;
5 vec3 n=normal ize (NormalMatrix∗vNormal . xyz) ;
6 r e f l e c t e d=r e f l e c t (e , n) ; // r e f l e c t i o n vec t o r in eye and world coord
7 r e f l e c t e d=vec3 (i nv e r s e (ViewMatrix)∗ vec4 (r e f l e c t e d , 0 . 0)) ;

1 /∗ Key GPU Shader o f CubeMapping . f r a g ∗/
2 //Perform a s imple 2D t e x t u r e l ook up .
3 vec3 ba s e c o l o r=texture2D (colorMap , t ex coord) . rgb ;
4 //Perform a cube map look up .
5 vec3 cube co l o r=textureCube (cubeMap , r e f l e c t e d) ;
6 //Write the f i n a l p i x e l .
7 g l FragCo lor=vec4 (mix (ba s e co l o r , cube co lo r , r e f l e c t f a c t o r) , 1 . 0) ;

4. Experiment Results. We have implemented the fast realistic rendering using diffu-
sion model and cube environment mapping on GPU. With Intel(R) Core(TM) i5-4770M
CPU @ 3.40GHz and NVIDIA GeForce 9800GT, we have realized the method using GLSL
shader and OpenGL programming in VS2014. We have achieved relatively high speed of
rendering and our results clearly show the effective implementation of our technique.

Firstly, we give realistic rendering of marble budda using our method and BRDF (Bidi-
rectional Reflectance Distribution Function). The number of budda triangles is about
78KB and the parameters weights wi and variances vi used are from Jensen et al.’s re-
search [1]. Rendering effects of the marble budda are shown in Figure 3.

(a) Budda rendering
via BRDF

(b) Budda rendering
via our method

Figure 3. Comparison of budda rendering via two methods

From Figure 3, we could observe that not only the right result using our method gives
a better translucency effects, but also the soft shadow and details such as face area can be
rendered. So we give a much more realistic appearance over BRDF, which is truly accord
with actual properties of marble budda.

Then, adding environment light we render the teapot containing about 46KB using our
method and GPU raytracing [10], and give two rendering images as shown in Figure 4.

From Figure 4, using our method, we can render more clear reflection and depict a better
shiny-looking effect, so that the model is more naturally integrated into the surrounding
light.

To give an objective evaluation, we count the numbers of triangle and FPS (Frames Per
Second) in the testing model for comparison with Monte Carlo raytracing [2] and GPU
raytracing [10] shown in Table 1. From Table 1, we obtain a relatively less computation
time as a result of precomputation and quick lookup. The main reason for this is that

810 G. LI AND Y. GUO

(a) Rendering via GPU raytracing [10] (b) Rendering via our method

Figure 4. Comparison of teapot rendering via two methods

Table 1. FPS comparison via different methods

Models Triangles Raytracing [2] GPU raytracing [10] Our method
Budda 78KB 3FPS 51FPS 65FPS
Teapot 46KB 10FPS 75FPS 83FPS

environment mapping is essentially the process of pre-computing a texture map and then
sampling texels from this texture during the rendering of a model. When increasing
rendering points of translucent objects greatly, the difference of rendering time between
our method and two comparison methods [2,10] is more obvious which shows that we are
able to achieve faster speed while keeping realistic appearance.

Above all, we could get reasonable conclusion that our method can truly render the
appearance of translucent objects in real scenes, and show their actual colors, soft shadow
and appearance details.

5. Conclusions. In this paper, an efficient method of realistic rendering has been pro-
posed and implemented using discrete diffusion model and cube environment mapping
on GPU. Experimental results show that we could show their actual colors and acquire
realistic rendering of translucent materials. Some realistic effects such as soft shadow and
appearance details can be simulated, which is more naturally integrated into the environ-
ment light. Also we obtain a relatively less computation time and higher FPS of rendering
over Monte Carlo raytracing [2] and GPU raytracing [10].

Although the proposed approach has achieved a better rendering effect, it cannot ex-
press inter-object reflection very well. So how to approximate inter-object reflection to
simulate global illumination is an interesting direction we are working on.

REFERENCES

[1] H. Jensen, S. Marschner, M. Levoy and P. Hanrahan, A practical model for subsurface light transport,
Proc. of the 28th Annual Conference on Computer Graphics and Interactive Techniques, pp.511-518,
2001.

[2] H. Jensen, Monte Carlo ray tracing, ACM SIGGRAPH Course Notes, vol.18, no.2, pp.163-196, 2003.
[3] C. Donner and H. Jensen, Light diffusion in multi-layered translucent materials, ACM Trans. Graph-

ics, vol.24, no.3, pp.1032-1039, 2005.
[4] C. Donner and H. Jensen, A spectral BSSRDF for shading human skin, Proc. of the Eurographics

Conference on Rendering Techniques, pp.409-417, 2006.
[5] G. Borshukov and J. Lewis, Realistic human face rendering for the matrix reloaded, ACM SIG-

GRAPH Courses, pp.13-23, 2005.

ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.7, NO.4, 2016 811

[6] E. d’Eon and D. Luebke, Advanced techniques for realistic real-time skin rendering, GPU Gems 3,
vol.3, pp.293-347, 2007.

[7] J. Jimenez, V. Sundstedt and D. Gutierrez, Screen-space perceptual rendering of human skin, ACM
Trans. Applied Perception, vol.6, no.4, p.3, 2009.

[8] K. Xu, L. Ma, B. Ren and A. H. Shimin, Interactive hair rendering and appearance editing under
environment lighting, ACM Trans. Graphics, vol.30, no.6, pp.61-64, 2012.

[9] I. Kei, M. Kazutaka, D. Yoshinori and N. Tomoyuki, Interactive cloth rendering of microcylinder
appearance model under environment lighting, Computer Graphics Forum, vol.33, no.2, 2014.

[10] J. Dahlin, D. Jonsson, M. Kok, T. B. Schon and J. Unger, Real-time video based lighting using GPU
raytracing, Proc. of the 22nd European Signal Processing Conference, pp.1627-1631, 2014.

