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Abstract. Visual tracking is a challenging problem for the appearance changes caused
by extrinsic and intrinsic factors. In this paper, a robust object tracking algorithm exploit-
ing both collaborative representation and coding residual is proposed within the Bayesian
inference framework. To solve the constrained convex optimization problem, we propose
an effective numerical algorithm for the minimization problem based on the Augmented
Lagrange Multiplier (ALM) method, which guarantees the object representation to be
solved efficiently. Extensive experimental results on several challenging sequences con-
firm the effectiveness of the approach, which significantly outperforms competitive track-
ers in terms of accuracy measures including the overlap ratio and center location error,
respectively.
Keywords: Visual tracking, Collaborative representation, Bayesian inference, Aug-
mented Lagrange Multiplier

1. Introduction. As one of the underlying issues in computer vision, object tracking
plays a significant role due to potential applications in critical tasks such as image com-
pression, video surveillance, and activity analysis. While much progress has been made
in the past decades, designing a robust visual tracking system is still a challenging prob-
lem due to multitudinous challenges including background clutter, fast motion, varying
illumination, and occlusion.

Recently, more attention has been paid to the sparse representation for object tracking
[1-4]. In [1], Mei and Ling present an L1 tracker based on sparse representation of target
templates and trivial templates. The tracking task is aimed to search the most possible
patch with sparse representation and the error term is treated as arbitrary but sparse noise
handled with trivial templates. Some other L1 based tracking methods have been proposed
from different views to improve the effects of the tracking. In [2], Jia et al. present an L1

tracker based on the structural local sparse appearance model that integrates local and
global information of an observed image through an alignment pooling method. In [4],
Zhuang et al. propose a discriminative sparse similarity map obtained from a multi-task
reverse sparse coding approach with Laplacian term for visual tracking.

Some latest researches in face recognition and visual tracking show that methods with
collaborative representation can also have a well performance compared with the sparse
representation [5-8]. In [5], Yang et al. reveal that it is the collaborative representa-
tion, not the sparse representation, that truly improves the accuracy of face recognition.
Inspired by the collaborative representation in [5] and subspace learning in [6], Xiao et
al. further propose an L2-regularized based tracking method to powerfully use all of the
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orthogonal Principal Component Analysis (PCA) basis vectors in subspace for object rep-
resentation [8]. To handle the appearance changes in the process of tracking, the square
noise templates are introduced to represent the corrupted object. However, the weak
sparse projection coefficient of L2-regularized may deteriorate the ambiguity of square
noise templates that reconstruct both the foreground and background. Moreover, the
residual modeled by Gaussian cannot well tolerate the outliers (e.g., occlusion) for the
weak sparsity of L2-norm.

Motivated by the above-mentioned work and success of outliers handling in face recog-
nition [9], we propose a robust tracking algorithm based on collaborative representation
of PCA basis vectors. Different from the object representation in [8], we use the L1-norm
to measure the coding residual for robustness to outliers. To solve the minimization prob-
lem of object representation, the Augmented Lagrange Multiplier (ALM) method [10] is
adopted which can guarantee the representation model to be solved effectively.

The paper is organized as follows. Section 2 presents the proposed object representation.
Section 3 presents the tracking framework. Section 4 conducts extensive experiments to
demonstrate the performance of proposed method. Section 5 places the conclusion.

2. Object Representation. In this section, we propose an improved collaborative rep-
resentation model for robust visual tracking and an effective numerical algorithm to solve
the proposed appearance model.

2.1. Improved collaborative representation. Given an orthogonal PCA subspace
D ∈ Rd×m, where d and m respectively represent the feature dimension and the number
of basis vectors, the target region y ∈ Rd×1 can be represented by an image subspace with
projection coefficient c ∈ Rm×1. To collaboratively represent object, we use L2-norm to
regulate c, and then we have the following minimization problem:

c∗ = arg min
c

{‖y − Dc‖2

2 + λ‖c‖2

2} (1)

where λ is a regularization parameter.
However, when outliers occur in sequence, using L2-norm to measure the representation

fidelity is less robust than L1-norm for the L1-norm could tolerate the outliers [9], and
then we have:

c∗ = arg min
c

{‖y − Dc‖1 + λ‖c‖2

2} (2)

Let e = y − Dc, and we can rewrite Equation (2) as

c∗ = arg min
c

{‖e‖1 + λ‖c‖2

2} s.t. y = Dc + e (3)

2.2. Effective numerical method for solving Equation (3). Equation (3) is a con-
strained convex optimization problem which can be efficiently solved through ALM oper-
ation. The corresponding ALM function is:

Lτ (e, c, γ) = ‖e‖1 + λ‖c‖2

2 + 〈γ, y − Dc − e〉 +
τ

2
‖y − Dc − e‖2

2 (4)

where 〈·, ·〉 denotes the inner product operator, γ is a vector of Lagrange multiplier, τ
is a constant that determines the penalty for large representation error, and {τk} is a
monotonically increasing positive sequence. The ALM method iteratively estimates the
optimal solutions and the Lagrange multiplier by minimizing the augmented Lagrangian
function:

(ek+1, ck+1) = arg min
e,c

Lτk
(e, c, γk) (5)

γk+1 = γk + τk(y − Dc − e) (6)

τk+1 = ρτk (7)
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where ρ is a constant that ensures {τk} monotonically increases. The minimization in
Equation (5) could be implemented by alternatively and iteratively updating the two
unknowns c and e as follows:

{

ck+1 = arg min
c

Lτk
(ek, c, γk)

ek+1 = arg min
e

Lτk
(e, ck+1, γk)

(8)

We could have a closed-form solution:
{

ck+1 = (DTD + 2λ/τk)
−1DT (y − ek + γk/τk)

ek+1 = S1/τk
[y − Dck+1 − ek+1]

(9)

where Sθ(x) is the soft thresholding operator, which defines as sgn(x)max(|x|-θ). Let
Pk = (DTD + 2λ/τk)

−1DT, Pk is independent from y, therefore, we can pre-calculate
it as a set of projection matrices for all the candidates in each frame. Once a candidate
image patch y comes, we can simply project y onto Pk via Pky in the first stage of ALM,
which makes the calculation quickly. The entire algorithm for solving Equation (3) is
summarized in Algorithm 1.

Algorithm 1 Effective ALM method for solving (3)

1: set e1 = c1 = γ1 = 0, τ1 = 10
Input: The PCA subspace D, the candidate sample y

2: for k = 1, 2, . . . , until both the c and e are convergent to optimal state do
3: ck+1 = (DTD + 2λ/τk)

−1DT (y − ek + γk/τk)
4: ek+1 = S1/τk

[y − Dck+1 − ek+1]
5: γk+1 = γk + τk (y − Dc − e)
6: τk+1 = ρτk

7: end for
Output: The optimal c∗ and e∗

3. Tracking Framework. The object tracking task can be casted as a Bayesian inference
problem in the Markov model. Given a series of observed samples y1:t = {y1, y2, . . . , yt},
the purpose is to recursively estimate the hidden state variable:

p(xt|y1:t) ∝ p(yt|xt)

∫

p(xt|xt−1)p(xt−1|y1:t−1)dxt−1 (10)

where xt is the object state, yt is the observation at time t, p(xt|xt−1) denotes the mo-
tion model between two continuous object states while p(yt|xt) indicates the observation
model which is applied to computing the likelihood of candidates. The entire tracking
procedure is summarized in Figure 1. At the outset, the state of the target is manually
initialized. Then, the candidate samples can be obtained from the motion model. Once
the state parameters of residual and projection coefficient are obtained from Algorithm
1, we can evaluate the likelihood of each candidate state. Finally, the samples are cumu-
lated to update the subspace for handling the change of target object. The whole tracking
procedure will keep running until the target state of last frame is obtained.

Motion Model: Let xt = {lx, ly, θ, s, α, φ}, where lx, ly, θ, s, α, φ indicate x, y trans-
lations, rotation angle, scale, aspect ratio, and skew respectively. These affine parameters
are supposed to be independent and modeled by six scalar Gaussian distributions. We
use the random walk to formulate the state transition, i.e., p(xt|xt−1) = N (xt; xt−1,Ψ),
where Ψ is a diagonal covariance matrix of the affine parameters.

Observation Model: The residual e can be considered as the error for the recon-
struction. However, the small Gaussian noises still exist in real situations. Thus, the
observation likelihood can be measured as:

p(y|x) = exp (−σE(c∗, e∗)) (11)
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where E(c∗, e∗) = (1/2)‖y − Dc∗ − e∗‖2
2 + λ‖e∗‖1, and σ is a constant controlling the

shape of the Gaussian kernel. The former part of E(c∗, e∗) accounts for the small Gaussian
noises and the latter part aims to penalize the primary residual pixels.

Figure 1. The illustration of the proposed tracking framework

Subspace update: The columns of subspace D are PCA basis vectors. To learn the
appearance of the target object while tracking processes, it is necessary to incrementally
update the subspace when new observations arrive. In this paper, we adopt the incre-
mental PCA method [6] to update the subspace when enough samples are cumulated. As
the residual term can be used to identify outliers, the sample used to update the subspace
can be extracted as:

yi =
{

yi |ei| = 0
µi otherwise (12)

where yi, µi and ei are the i-th element of y, µ, and e respectively, and µ is the mean
vector in [6].

4. Experiments. The proposed tracker is implemented in MATLAB and runs at 6
frames per second on a 3.5GHz CPU with 8GB memory. We empirically set λ = 5e−2,
ρ = 1.5, σ = 20. The location of the target in the first frame is manually labeled. Each
observation is normalized to 32 × 32 pixels, and 16 PCA basis vectors are used for the
subspace in all the experiments. 600 particles are adopted and our tracker is incrementally
updated when 5 samples are cumulated.

To prove the effectiveness of the proposed algorithm, we use eight challenging image
sequences containing different challenging factors (e.g., illumination change, severe occlu-
sion, and background clutter) and compare our method with six competitive methods: In-
cremental Visual Tracking (IVT) [6], Probability Continuous Outlier Model (PCOM) [7],
Adaptive Structural Local Appearance (ASLA) [2], Sparsity based Collaborative Model
(SCM) [3], Discriminative Sparse Similarity Tracking (DSST) [4], and L2-regularized Least
Square (L2-RLS) [8]. For a fair evaluation, we run these codes with the same bounding
box in the first frame.

4.1. Quantitative evaluation. Quantitative evaluation is aimed to fairly evaluate the
ability of tracking methods. We evaluate the aforementioned algorithms by computing
their average overlap rates and center errors. It should be noted that a bigger overlap
rate or a smaller center error means a more proper result. Given the result of each frame
and corresponding ground truth, we can get the overlap rate by the PASCAL VOC [11]
criterion. The results are listed in Table 1 and Table 2.
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Table 1. Average overlap rate. The best result is shown in bold font.

Sequence IVT ASLA SCM PCOM DSST L2-RLS Ours

Occlusion2 0.73 0.70 0.82 0.83 0.60 0.78 0.83

DavidOutdoor 0.52 0.46 0.38 0.57 0.13 0.75 0.74

DavidIndoorNew 0.44 0.42 0.51 0.76 0.60 0.23 0.76

Singer1 0.47 0.82 0.84 0.60 0.70 0.24 0.86

Boy 0.19 0.79 0.53 0.31 0.78 0.79 0.79

Jumping 0.62 0.67 0.73 0.68 0.61 0.73 0.74

Stone 0.12 0.51 0.62 0.43 0.10 0.37 0.60

Deer 0.24 0.63 0.61 0.55 0.63 0.60 0.69

Average 0.416 0.625 0.630 0.591 0.519 0.561 0.751

Speed(fps) 32 9 0.5 20 4 10 6

Table 2. Average center error (pixel). The best result is shown in bold font.

Sequence IVT ASLA SCM PCOM DSST L2-RLS Ours

Occlusion2 7.8 6.9 4.4 4.5 11.9 5.5 3.4

DavidOutdoor 52.4 86.5 67.1 51.2 209.8 6.0 7.4

DavidIndoorNew 35.9 32.4 17.7 3.8 11.9 132.0 3.4

Singer1 11.9 3.8 3.2 10.8 12.8 72.8 2.7

Boy 177.2 2.8 51.8 146.7 3.2 2.9 3.0

Jumping 6.4 5.2 3.9 4.9 6.8 3.8 3.7

Stone 115.1 3.7 2.6 29.3 56.6 25.7 3.1

Deer 135.2 5.9 10.1 14.9 8.8 9.4 6.1

Average 67.7 18.4 20.1 33.3 40.2 32.3 4.1

4.2. Qualitative evaluation.
Severe Occlusion: We test two sequences (Occlusion2, DavidOutdoor) with occlusion.

The IVT tracker does not take the occlusion into consideration for the object representa-
tion and this tracker is less effective for the sequence with severe occlusion. Overall, the
L2-RLS and our tracker can perform better than other trackers. As for the ambiguity
of the L2-regularized coefficient to square template, we adopt the L1-norm to measure
the residual. Therefore, our tracker is more robust to occlusion compared with L2-RLS
tracker.

Illumination Change: Figure 2(b) presents the tracking results in the sequences
(Singer1, DavidIndoorNew) with drastic illumination change. The L2-RLS tracker is less
effective in both of the two sequences for the weak tolerance to outliers. As our tracker
applies the L1-norm to tolerating the outliers and PCA basis vectors to modelling the
subspace respectively, our tracker is more robust to the illumination change.

Motion Blur: Figure 2(c) shows results from two challenging sequences (Boy, Jump-

ing) with abrupt motion. It is a challenging task to estimate the locations of the target
when abrupt motion occurs. Moreover, the imprecise prediction of location will cause the
tracked target to be inaccurate and degenerate the subspace or template dictionary. It
can be seen that our tracker and L2-RLS tracker perform well in both of the two sequences
for the powerful ability to collaboratively represent the object.
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Figure 2. Sample tracking results on eight challenging sequences: (a)
Occlusion2 and DavidOutdoor with occlusion; (b) DavidIndoorNew and
Singer1 with illumination change; (c) Boy and Jumping with fast motion;
(d) Stone and Deer with background clutter

Background Clutter: Figure 2(d) shows the tracking results in the Stone and Deer

with complex background. Moreover, the Stone sequence contains partial occlusion and
the Deer sequence contains motion blur, respectively. As the proposed tracker can effec-
tively handle the outliers in the process of tracking, our tracker can be more effective in
these two sequences.

5. Conclusions. This paper presents a robust visual tracking method based on the im-
proved L2-regularized collaborative representation. Different from the traditional supposi-
tion of Gaussian to the coding residual, we use the L1-norm to measure the coding residual
for the tolerating of the outliers. Moreover, an effective ALM based numerical algorithm
is applied to solving the minimization problem of object representation. Extensive ex-
perimental results validate the proposed method can achieve more favorable performance
than several competitive methods. In the future, we plan to integrate multiple visual cues
(e.g., color) into our object representation for more effective tracking.
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