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Abstract. Storing data into a two dimensional pixel image in the holographic data
storage (HDS) imposes new constraints in modulation codes. In this paper, we propose a
modulation codeword selection procedure based on integer programming models reducing
two-dimensional inter-symbol interference (2-D ISI) and inter-page interference (IPI).
We formulated an integer programming model that selects codewords satisfying symbol
balance and 3-0 violation constraints. We also develop a cutting plane generating sub-
model for generating cuts as needed for large scale implementation. We applied the
proposed models to 2/3 and 3/4 4-ary codes and compared its performance.
Keywords: Holographic data storage, Modulation code, Integer programming, Vertex
packing

1. Introduction. Multi-level holographic data storage is expected to be the next gen-
eration optical storage system [1]. Holographic data storage (HDS) systems records in-
formation on the volume of holographic materials and writes input data in the form of
page. This recording scheme can cause two major problems – two-dimensional (2-D) inter-
symbol interference (ISI) and inter-page interference (IPI). 2-D ISI and IPI decrease the
bit-error-rate (BER) performance of HDS systems. In a multi-level holographic data stor-
age channel, each pixel records multi-level symbol so that the same number of pixels carry
more information than binary pixels. Therefore, there is more severe 2-D ISI between ad-
jacent symbols. To have a good detection performance, many researchers investigated the
multi-level modulation codes and error correction codes [2,3].

To reduce 2-D ISI and IPI, the following constraints are usually considered. i) To
reduce IPI, the sum of intensity of the signal on each page must be similar. That is, if the
distribution of each symbol is equally likely (“balanced”), then the variation caused by
the intensity of the signal beam, and IPI could be reduced. ii) To reduce the 2-D ISI, the
symbol value difference in adjacent pixels should be small, i.e., symbol ‘3’ is not adjacent
to ‘0’. We call constraint ii) as 3-0 violation. iii) For the error-correction capability, selected
codeword satisfies the minimum Hamming distance. iv) When codewords are stored on a
page, the occurrence of the isolated pixel (‘0’ surrounded with ‘3’ and vice versa) should
be minimized [4-6]. For binary code, constant-weight balanced block codes with minimum
Hamming distance d = 2, 4 are introduced avoiding constraints i) and iii). For example,
a 2× 2 shaped codeword having two ‘1’s and two ‘0’s is even weight and if all codewords
are even weight, the minimum Hamming distance between codewords is at least two. For
constraint iv), consecutive 11 or 00 is used to avoid the isolated pixel [7-11].

In this paper, we develop an integer programming model that computes modulation
code satisfying constraints i) and ii). The proposed model is a generalized vertex packing
problem on a conflict graph. In Section 2, we describe the proposed integer programming
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model and solution approach. In Section 3, we describe the properties of the 2/3 and 3/4
code computed from the integer program, and Section 4 concludes this paper.

2. Integer Programming Model for Modulation Code. We describe our model
based on the 4-ary modulation code where each codeword is a 3× 1 matrix and each cell
contains a symbol from S = {0, 1, 2, 3}. In Figure 1, the first 3×1 matrix shows a typical
codeword in 2/3 code. This codeword consists of 2-1-3 symbols. The middle figure shows
two 3-0 violations when three codewords are adjacent. 3-0 violation can occur between
horizontally and vertically adjacent codewords. The right figure shows an isolated pixel
when six codewords are arranged in a page. Here, inside a 3 × 3 shaded subarea, ‘0’ is
surround with ‘3’s.

Suppose that we choose 16 = 42 codewords among possible 64 = 43 codewords. Let
n = 64, b = 16, and s = 0, . . . , 3 denote symbol value in each cell. Let j = 1, . . . , n denote
candidate codeword, cj the number of 3-0 violation in codeword j, and bsj is the number of
symbol s in codeword j. For example, if a codeword consists of 3-0-3, cj = 2 and b3j = 2,
b0j = 1. We define our model on a conflict graph G = (V,E), where V = {1, . . . , n}. Edge
(i, j) ∈ E, if 3-0 violation occurs when codewords i and j are adjacent. The binary
variable xj = 1 if codeword j is selected.

Codeword selection problem is the following integer program.

Minimize
∑
j

cjxj

subject to
∑
j

xj = b∑
j

bsjxj = ds, s ∈ S

xi + xj ≤ 1, (i, j) ∈ E

xj ∈ {0, 1}, j = 1, . . . , n.

(1)

For Hamming distance constraint, we can similarly define a set H = {(i, j) : dH(i, j) <
dmin}, where dH(i, j) is the Hamming distance and dmin is the required minimum Hamming
distance. Then we can add constraints xi + xj ≤ 1, (i, j) ∈ H. This problem is a variant
of a vertex packing problem which is NP-hard [12,13].

When we implement Formula (1) into the integer programming solver such as ILOG
CPLEX, for large scale instances, inclusion of edge constraint xi + xj ≤ 1, (i, j) ∈ E
into the formulation cannot be feasible. For example, for 6/8 code where n = 48, b = 46,
the cardinality of the set E is in the order of O(416), so there needs to be an iterative
procedure to generate the edge constraints. Also, we need a way to check the violation
of edge constraint in a given feasible solution. The next integer programming model
decides the given feasible solution contains 3-0 violation when only a subset of edge
constraints are included in the current feasible solution. In this formulation, the objective

Figure 1. Codeword, 3-0 violation, and an isolated pixel
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value indicates the number of 3-0 violations in the current solution. Variables zr(i,k),c(i,k)

represents symbols of three codewords for checking 3-0 violations such as the middle figure
in Figure 1. The ykj represents codeword j is located at kth position. Absolute values st

computes symbol differences between neighboring codewords horizontally and vertically.
The indicator variable δt = 0 when the absolute value |zij−zkl| ≥ lt and if |zij−zkl| ≤ lt−1,
δt = 1. Here, lt is an upper bound for the absolute value. We set lt =3 and M =5 in (2).

Minimize
∑
t

δt

subject to
∑
j

ykj = 1, ∀k

zr(i,k),c(i,k) =
∑
j

aijykj, ∀i, k

|zij − zkl| = st, t ∈ A

st − Mδt ≥ lt, t ∈ A

ykj and δt ∈ {0, 1}, st ≥ 0

(2)

Note that the optimal value of zero indicates that there exists a 3-0 violation in the
current solution and optimal value of four corresponds to that there is no 3-0 violation in
the current 2/3 code. The iterative scheme where edge constraints are generated as needed
is summarized in Figure 2. Notice that the proposed cutting plane second formulation
can be easily modified to cut different isolated pixel patterns.

Figure 2. Iterative scheme generating cuts

3. Computational Results. Formulas (1) and (2) are implemented on PC using Mi-
crosoft Visual Studio 10 with IBM ILOG CPLEX as the integer program solver [14]. To
speed up the branch and bound procedure in the CPLEX, we added clique constraints
to Formula (1). Formula (1) is tested on two types of 4-ary modulation codes. For the
2/3 code, each codeword is 3× 1 matrix and we selected 16 codewords among possible 64
codewords. For 3/4 code, each codeword is 2 × 2 matrix and we selected 64 codewords
from 256 possible codewords. In Table 1, we show the selected codewords from Formula
(1). For 2/3 codes, symbols 0:1:2:3 are used as 14:14:14:6. Note that for this test, we
relaxed symbol balance constraint in (1) using additional slack variables. Also, there are
two 3-0 violations inside codewords 031 and 230. There are no 3-0 violations between
codewords. Note that all ‘3’ symbols are located in the middle cell, while ‘0’ symbols are
in the first and third cells. For 3/4 code, symbols 0:1:2:3 are used as 107:76:73:0. Note
that symbol ‘3’ is not used entirely. Because ‘3’ is not used, there is no 3-0 violations
inside and between codewords. When we apply penalties for symbol balance variables,
we found another code with no ‘0’ symbol that avoids 0-3 violations.
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Table 1. Selected codeword set for 2/3 and 3/4 codes

2/3 code 3/4 code
010 0000 0121 1012 2002
011 0001 0122 1020 2010
012 0002 0200 1021 2011
020 0010 0201 1022 2012
021 0011 0202 1100 2020
022 0012 0210 1101 2021
031 0020 0211 1102 2022
110 0021 0212 1110 2100
120 0022 0220 1120 2101
131 0100 0221 1200 2102
132 0101 0222 1201 2110
210 0102 1000 1202 2120
220 0110 1001 1210 2200
230 0111 1002 1220 2201
231 0112 1010 2000 2202
232 0120 1011 2001 2210

4. Conclusions. In this paper, we developed integer programming models for selecting
codewords for the holographic storage systems. The modulation code is designed to miti-
gate ISI and IPI where 3-0 violations between neighboring pixels are avoided and symbols
are equally distributed. We also show that 3-0 violation can be checked using separate
integer programming model that generates cutting constraint. We tested the proposed
models to 4-ary 2/3 and 3/4 codes and computed balanced modulation codes with desired
requirements. The performance carried in this paper is purely algebraic cost. To further
test the performance of these codes, the solution found in this paper should be tested in
terms of BER in various scenarios. Investigation of the valid inequalities for this model
is left as a future research.
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