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Abstract. The main goal of this paper is to investigate the problem of asymptotic sta-
bility of uncertain discrete-time systems involving interval time-varying delay. The un-
certainties of the system matrices are assumed to be structured fractional uncertainty. By
the construction of suitable Lyapunov-Krasovskii functionals with some double summa-
tion terms and the utilization of discrete Jensen inequality, a delay-dependent sufficient
condition for calculating the maximum allowable upper bound of the delay interval is
derived to achieve asymptotic stability of such systems. The stability criterion is ex-
pressed in terms of linear matrix inequality (LMI) which can be easily checked by using
the standard numerical tools for MATLAB. In addition, a delay-partitioning approach
combining Park and Jensen inequalities will be used to improve the stability condition of
proposed results. Finally, a numerical example is provided to show the usefulness and
reduce conservativeness of the proposed result.
Keywords: Discrete-time systems, Asymptotic stability, Interval time-varying delay,
Discrete Jensen inequality, Delay-partitioning approach, Park inequality

1. Introduction. Time-delay phenomenon is often confronted in various practical sys-
tems, such as aircraft stabilization, chemical engineering systems, congestion control in
high speed networks, hydraulic systems, inferred grinding model, manual control, neu-
ral network, nuclear reactor, population dynamic model, rolling mill, ship stabilization,
and systems with lossless transmission lines. Existence of delay in a system may cause a
source of instability or bad performance in closed loop control systems. Hence, stability
problem for continuous-time and discrete-time systems with time delay has received some
attention by many researchers in recent years [1]. In this paper, we will focus on stability
analysis of discrete-time systems with interval time-varying delay [2-11].

The models of system always contain some uncertain elements because exact mathe-
matical models are difficult to construct; such as additive environmental noises, ageing
of systems, poor plant knowledge. Many types of perturbations had been considered in
the past. Linear fractional perturbations in [12,13] are the generalized perturbed forms
versus parameter perturbations in [9]. Hence, the robust asymptotic stability problem
for discrete-time systems with linear fractional perturbations is considered in this paper.
In recent years, many approaches had been used to improve the stability for discrete
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time-delay systems. Delay-partitioning approach is a new developed tool to decompose
the bound of the interval time-varying delay into p uniform subintervals [8,9]. In those
previous results, the dimension of LMI conditions will be large due to the large number
of partition in interval time-varying delay. In this paper, the novel delay-partitioning ap-
proach is proposed with the same dimension in LMI conditions. Discrete Jensen and Park
inequalities are used to derive our main results in this paper. More accurate evaluation
is the main developed tool in each subinterval of interval time-varying delay [14,15]. In
this paper, a new Lyapunov functional is proposed without including time-varying delay
r(k). Hence, some upper bounds evaluations in [13] can be avoided. In this paper, a
delay-dependent LMI condition is proposed to guarantee the robust asymptotic stability.
A numerical example is provided to show the effectiveness of the proposed results.

The remainder of this paper is organized as follows. The problem formulation and the
main results are given in Section 2. Section 3 provides a numerical example to illustrate
the main results. Finally, a conclusion is made in Section 4.

Notations. For a matrix A, we denote the transpose by AT , symmetric positive
(negative) definite by A > 0 (A < 0). A ≤ B means that matrix B − A is symmetric
positive semi-definite. 0 and I denote the zero matrix and identity matrix, respectively.
diag[· · · ] stands for a block-diagonal matrix.

2. Problem Formulation and Main Results. Consider the following uncertain discre-
te-time system with interval time-varying delay and linear fractional perturbations

x(k + 1) = (A + ∆A(k))x(k) + (B + ∆B(k))x(k − r(k)), (1a)

x(k) = ϕ(k), k ∈ [−rM , 0], (1b)

where x(k) ∈ ℜn is the state vector, A and B ∈ ℜn×n are some given constant matrices,
and ϕ(k) ∈ ℜn is an initial state function. The time-varying delay r(k) is a function from
{0, 1, 2, 3, . . .} to {1, 2, 3, . . .}, satisfying the following condition:

0 < rm ≤ r(k) ≤ rM , (2)

where rm and rM are two given positive integers, respectively. ∆A(k) and ∆B(k) are two
perturbed matrices and satisfy the following conditions

[∆A(k) ∆B(k)] = M · ∆(k) · [N1 N2], (3a)

∆(k) = [I − Γ(k)Ξ]−1Γ(k), ΞΞT < I, (3b)

where M , N1, N2, and Ξ are some given constant matrices of compatible dimensions, and
Γ(k) is unknown matrix representing the parameter perturbations which satisfy

ΓT (k)Γ(k) ≤ I. (3c)

Remark 2.1. In the system (1), these uncertainties in (3a)-(3c) are referred to as a lin-
ear fractional perturbations [12]. This class of uncertainties has been investigated in many
classes of systems; such as fuzzy systems; neural networks; switched system [12,13,16]. It
is easy to see that when Ξ = 0, linear fractional perturbations in (3a)-(3c) are reduced
to norm bounded ones. Hence, we assume that the uncertainties of system under consid-
eration satisfy the linear fractional perturbation conditions in (3a)-(3c) with some given
constant matrices M , N1, N2, and Ξ.

The following lemmas are introduced to derive our main results.

Lemma 2.1. [14] (Discrete Jensen inequality) For any matrix R ∈ ℜn×n > 0, positive
integers r2 < r1, vector function ω(θ) ∈ ℜn, the following inequalities are satisfied:

−(r2 − r1) ·
k−r1−1∑
θ=k−r2

ωT (θ)Rω(θ) ≤ −

[
k−r1−1∑
θ=k−r2

ω(θ)

]T

R

[
k−r1−1∑
θ=k−r2

ω(θ)

]
,
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and

− (r2 − r1) · (r2 − r1 + 1)

2
·
−r1−1∑
l=−r2

k−r1−1∑
θ=k+l

ωT (θ)Rω(θ)

≤ −

[
−r1−1∑
l=−r2

k−r1−1∑
θ=k+l

ω(θ)

]T

R

[
−r2−1∑
l=−r2

k−r1−1∑
θ=k+l

ω(θ)

]
.

Lemma 2.2. [15] (Park inequality) For any matrices V ∈ ℜn×n > 0, M1,M2 ∈ ℜn×m,
a positive real number 0 < α < 1, vector ω ∈ ℜm, there exists a matrix X ∈ ℜn×n, such
that [

V X
∗ V

]
> 0.

Then the following inequality is satisfied:

−
[

1

α
ωT MT

1 V M1ω +
1

1 − α
ωT MT

2 V M2ω

]
≤ −ωT

[
M1

M2

]T [
V X
∗ V

] [
M1

M2

]
ω.

Lemma 2.3. [12] For the matrix ∆(k) defined in (3b) and (3c), the following statements
are equivalent for any real matrices U , W and X with X = XT :

(I) The inequality is satisfied

X + U∆(k)W + W T ∆T (k)UT < 0,

(II) There exists a scalar ε > 0, such that X U ε · W T

∗ −ε · I ε · ΞT

∗ ∗ −ε · I

 < 0,

where the matrix Ξ is defined in (3b).

Now, when the whole delay interval is decomposed into p delay subintervals, i.e., 0 <
rm = r0 < r1 < r2 < · · · < rp−1 < rp = rM , where ri, i = 0, 1, 2, . . . , p, are some positive
integers, a novel delay-dependent stability criterion will be proposed to guarantee the
asymptotic stability of uncertain discrete-time system with interval delay.

Theorem 2.1. For some selected positive integers 0 < rm = r0 < r1 < r2 < · · · < rp−1 <
rp = rM , the system (1) with (2) and (3) is asymptotically stable, if there exist n × n
matrices P > 0, Ri > 0, i = 1, 2, 3, 4, Sj > 0, Hj > 0, Lj > 0, j = 1, 2, Wq > 0,
q = 1, 2, 3, and any n × n matrices T , X, Y , Z, satisfying

R1 + W1 > 0, R2 + W2 > 0, R2 + W3 > 0,

[
H1 W1

∗ R1 + W1 + L1

]
> 0, (4a)

[
H2 W2

∗ L2

]
> 0,

[
H2 W3

∗ L2

]
> 0,


H2 W2 T Y
∗ L2 X Z
∗ ∗ H2 W3

∗ ∗ ∗ L2

 > 0, (4b)

and a scalar ε > 0, such that the following LMI conditions are feasible:

Σi =

[
Σ1i Σ2

∗ Σ3

]
< 0, i = 1, 2, . . . , p, (4c)
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where

Σ1i =



Σ11 Σ12 0 0 Σ15 0 0
∗ Σ22i Σ23i Σ24 Σ25 Σ26 Σ27

∗ ∗ Σ33i Σ34i 0 Σ36 Σ37

∗ ∗ ∗ Σ44i 0 Σ46 Σ47

∗ ∗ ∗ ∗ Σ55 0 0
∗ ∗ ∗ ∗ ∗ Σ66 Σ67

∗ ∗ ∗ ∗ ∗ ∗ Σ77


,

Σ2 =



Σ18 Σ19 0 Σ111

0 0 0 0
Σ38 Σ39 0 Σ311

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


, Σ3 =


Σ88 0 Σ810 0
∗ Σ99 Σ910 0
∗ ∗ Σ1010 Σ1011

∗ ∗ ∗ Σ1111

 , (4d)

with

Σ11 = −P + S1 + r2
m · H1 + r2

Mm · H2 + (rm − 1) · W1 − R1 − r2
m · R3 − L1,

Σ12 = R1 + W1 + L1, Σ15 = rm · R3 − W T
1 , Σ18 = (A − I)T Θ,

Σ19 = AT P, Σ111 = ε · NT
1 ,

Σ22i = −S1 + S2 − (rm + 1) · W1 − R1 + rMm · W2 − λi · (R2 + W2) − r2
Mm · R4 − L1 − L2,

Σ23i = λi · (R2 + W2) + L2 − Z, Σ24 = Z, Σ25 = W T
1 ,

Σ26 = rMm · R4 − W T
2 , Σ27 = rMm · R4 − X,

Σ33i = rMm · (−W2 + W3) − λi · (R2 + W2) − γi · (R2 + W3) + Z + ZT − 2L2,

Σ34i = γi · (R2 + W3) − Z + L2, Σ36 = W T
2 − Y T , Σ37 = X − W T

3 ,

Σ38 = BT Θ, Σ39 = BT P, Σ311 = ε · NT
2 ,

Σ44i = −(S2 + rMm · W3) − γi · (R2 + W3) − L2, Σ46 = Y T , Σ47 = W T
3 ,

Σ55 = −R3 − H1, Σ66 = −R4 − H2, Σ67 = −R4 − T, Σ77 = −R4 − H2,

Σ88 = −Θ, Σ810 = ΘT M, Σ99 = −P, Σ910 = PM, Σ1010 = −ε · I,

Σ1011 = ε · ΞT , Σ1111 = −ε · I, rMm = rM − rm, r̂ =
rm

2
· (rm + 1),

r̃ =
rMm

2
· (rMm + 1), λi =

rMm

ri − rm

, γi =
rMm

rM − ri−1

, i = 1, 2, . . . , p,

Θ = r2
m · (R1 + L1) + r2

Mm · (R2 + L2) + r̂2 · R3 + r̃2 · R4.

Proof: Define the following Lyapunov functional:

V (xk) = V1(xk) + V2(xk) + V3(xk), (5a)

where

V1(xk) = xT (k)Px(k) +
k−1∑

θ=k−rm

xT (θ)S1x(θ) +
k−rm−1∑
θ=k−rM

xT (θ)S2x(θ), (5b)

V2(xk) = rm ·
−1∑

l=−rm

k−1∑
θ=k+l

ηT (θ)R1η(θ) + rMm ·
−rm−1∑
l=−rM

k−1∑
θ=k+l

ηT (θ)R2η(θ)

+ rm ·
−1∑

l=−rm

k−1∑
θ=k+l

yT (θ)R̂1y(θ) + rMm ·
−rm−1∑
l=−rM

k−1∑
θ=k+l

yT (θ)R̂2y(θ), (5c)

V3(xk) = r̂ ·
−1∑

l=−rm

k−1∑
θ=k+l

(θ − k − l + 1) · ηT (θ)R3η(θ)
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+ r̃ ·
−rm−1∑
l=−rM

k−rm−1∑
θ=k+l

(θ − k − l + 1) · ηT (θ)R4η(θ)

+ r̃2 ·
k−1∑

θ=k−rm

ηT (θ)R4η(θ), (5d)

where P > 0, Ri > 0, i = 1, 2, 3, 4, Sj > 0, Hj > 0, Lj > 0, R̂j = diag[Hj, Lj] > 0,

j = 1, 2, η(θ) = x(θ + 1)− x(θ), and y(θ) =
[
x(θ)T η(θ)T

]T
. Due to the page limit, this

proof can be finished by [15,16].

3. Example.

Example 3.1. Consider the system (1) with (2), no perturbation, and the following pa-
rameters [4]:

A =

[
0.8 0
0.05 0.9

]
, B =

[
−0.1 0
−0.2 −0.1

]
. (6)

By using the LMI Toolbox of Matlab, some allowable delay upper bounds that guarantee
the asymptotic stability for system (1) with (2) and (6) are provided in Table 1. From
Table 1, we can see that the presented stability results in this paper are less conservative
than ones in [3,4,6-8,11,13].

Table 1. The allowable delay upper bound rM for some rm (without perturbations)

Results rm = 4 rm = 6 rm = 10 rm = 15

[4] 8 9 12 16

[3] 13 14 15 18

[11] 13 14 17 20

[6] 15 16 18 21

[7] 15 16 18 21

[13] 17 17 17 19

[8] (p = 2) 17 * * *

[8] (p = 4) 18 * * *

Theorem 2.1 (p = 6) 20 20 22 25

* This sign represents that the original article does not provide
the delay upper bound rM .

From this numerical example, some other observations can be concluded from simula-
tion:

(1) Better results may be achieved by more partitions on delay interval.
(2) Better results in Theorem 2.1 can be obtained by combining the Park and Jensen

inequalities.
(3) Less LMI variables than nonnegative inequality approach in [13] can be obtained in

the proposed approach.

4. Conclusion. In this paper, the robust asymptotic stability for uncertain discrete-
time systems with interval time-varying delay and linear fractional perturbations has
been considered. Some novel stability criteria have been developed via delay-partitioning
approach. The obtained results have been shown to be less conservative than some existing
published results in a numerical example. It is worth pointing out that the derived
results can be extended to some more general discrete complex dynamical delayed neural
networks. This will be discussed in the near future.
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