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Abstract. This paper deals with the optimal cost analysis for a multi-state repairable
system with repair delays and interruptions, in which all states of the system cover normal
(N) and abnormal (A) operations, and normal and abnormal failures. Here the normal
failure (NF) and abnormal failure (AF) are non-detectable states, and the states N and
A are detectable ones. The state N can reach states NF and A. The system cannot enter
state AF until it has passed state A. We study the multi-dimension vector case of random
diagnostic parameter in detecting whether the system is in state N or A. Further, in our
model the impacts of repair delays and interruptions on the system reliability are also
considered. The supplementary variable method and the theory of differential equation are
applied to obtain the steady-state probability equations and their solutions, through which
some important reliability indices of the system are derived. A cost model, developed to
determine the optimal diagnostic and detection policy at a minimum cost, is studied. For
illustrative purpose two numerical examples are presented.
Keywords: Multi-state repairable system, Diagnosis and detection, Repair delays and
interruptions, Supplementary variable, Reliability indices, Optimal cost

1. Introduction. In the classical repairable systems, it is usually assumed that the sys-
tem has only two states: operation and failure. However, some practical productive equip-
ment usually has four states: normal (N) and abnormal (A) operations, and normal and
abnormal failures. Here the normal failure (NF) and abnormal failure (AF) are non-
detectable states, and the states N and A are detectable ones. The state N can reach
states NF and A. The system cannot enter state AF until it has passed state A. The
reason for states A and AF occurrence is the miss of operation or incorrect management.
Though the above systems are common in practice, very few researchers have studied
them. So it is important to develop their multi-state model and analyze their reliability
indices. Due to different failures producing different repair costs, it is necessary to carry
out detection measures. In engineering applications, a diagnostic parameter may be used
to detect states N and A by its measuring value. This is because the diagnostic parame-
ter, such as the power, amplitude, and frequency, has generally a close relation with the
system states and can be observed easily. Thus, the repairable systems with detection
and preventive repair has been hot topics of much research, and has been investigated by
many researchers. For detailed overviews of the main results and methods, the reader is
referred to the papers by Hu et al. [1, 2, 3], Li and Hu [4], Levitin and Lisniansk [5, 6],
Levitin [7], Su [8], Su et al. [9], Gu and Li [10], and Di et al. [11].

The existing research has focused mainly on reliability indices [1, 2, 3, 4, 10, 11], de-
tections policy [5, 6, 7], and the combination of these two cases [8, 9]. Further, most of
researchers were devoted to single random diagnostic parameter [1-10]. Little work has
been conducted to study multi-dimension vector case of random diagnostic parameter.
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However, the multi-dimension vector case of random diagnostic parameter is very wide-
spread in detecting the system states. For example, when detecting abnormal failure state
of some electronic equipment, the detected diagnostic parameters include the power, the
amplitude and the frequency, etc., which forms a diagnostic parameter vector. Also, in
most of repairable systems the failed system is assumed to be always repaired immediately
whenever the system fails, and the repair is not interrupted, although this assumption is
evidently unrealistic. Actually, it is not the case. The repair for the failed system does not
usually start immediately due to some particular reasons. For instance, certain essential
start-up times are to be taken before repair; the repairman is taking part-time jobs outside
for more profits of the system or he (she) is absent due to illness. When the busy repair
facility is subjected to lengthy and unpredictable breakdowns or the tired repairman needs
a short rest during repair period, etc., the repair for the failed system will be suspended.
Therefore, in the reliability theory and application of repairable systems the assumption
of repair delays and interruptions is reasonable. Since this kind of repairable system is
common in power plants, manufacturing systems, industrial systems and standby systems,
etc., it is a class of more general repairable system, and usual repairable systems are its
special cases. However, as far as we know, for this kind of repairable system mentioned
above no work gives a comprehensive study on multiple states, reliability indices, state
detection and diagnosis, and optimal cost analysis. This motivates us to develop an opti-
mal detection and diagnostic policy for minimizing the cost of the above repairable system
based on reliability analysis, in which the impacts of repair delays and interruptions on
the system reliability are also considered.

The rest of the paper is organized as follows. Section 2 gives the model assumptions.
In Sections 3 and 4, we develop differential equations governing the considered repairable
system and solve the steady-state state probabilities, which derive important reliability
indices of the system. In Section 5 by defining several cost elements we construct a
cost function of the system to determine the optimal diagnostic and detection policy at
a minimum cost rate. Two numerical examples are presented for illustrative purpose.
Finally, in Section 6 some conclusions are drawn.

2. Model Assumptions. We consider a multiple-state repairable system with repair
delays and interruptions as follows.

(1) All states of the system include normal (N) operation and abnormal (A) operation,
normal failure (NF), and abnormal failure (AF). Here the N and A are operating states,
and the others are failure ones. Also, the NF and AF are non-detectable states, and the
N and A are detectable ones. The operating system in N can transfer to NF or A with
constant failure rate λ1 or λ2, and the operating system in A only transfers to AF with
constant failure rate λ3.

(2) Whenever the system starts to operate, it will be detected once every a random time
T to make sure whether it is in N, or A until it attains NF (AF) or is detected as being in
A. Assume that T has distribution function H(t), density function h(t), hazard rate func-
tion α(t) and finite mean E(H). By detection the diagnosis parameter value taken by the
normal (abnormal) system is measured, where the diagnosis parameter of the normal (ab-
normal) system is a random vector, denoted by (X1, X2, · · · , Xm). It is assumed that the
detected results of the normal system are always accurate. For the abnormal system, let
FA(t1, t2, · · · , tm) be the distribution function of (X1, X2, · · · , Xm), and (x1, x2, · · · , xm)
and (u1, u2, · · · , um) denote the measured and critical values of (X1, X2, · · · , Xm), respec-
tively, and then the diagnostic criterion is as follows: when xi > ui, i = 1, 2, · · · ,m, the
abnormal system is deemed to be in A; otherwise it is seen as being in N.

(3) The system detected as being in A is immediately stopped but is not temporarily
repaired. For the system in NF (AF), or the system detected as being in A, it needs to wait
for a random time V before repair due to some unexpected events, such as, the startup of
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repair facility, the invitation of senior repairer, the absence of system repairman and some
preparatory work. Suppose that V is generally distributed with the distribution function
V (t) (t ≥ 0), hazard rate function r(t) and a finite mean E(V ). After a random time V ,
the system in NF (AF), or the stopped system in A is repaired with random repair time
Y1, Y2 or Y3, respectively, where the repair time Yi obeys a general distribution function
Gi(t), t ≥ 0 with hazard rate function µi(t) and a mean repair time E(Yi), i = 1, 2, 3.
After repair the system is as good as new, and operates at once.

(4) For the system in NF (AF), or the system detected as being in A, its repair time
may be interrupted by some emergencies, such as the repairman’s illness, the breakdown
of repair facility, and a power cut. The interruption is immediately recovered. It is as-
sumed that the emergencies arrive with Poisson rate a, and the recovery times for repair
interruption are independent and identically distributed random variables obeying a gen-
eral distribution function B(t) (t ≥ 0) with hazard rate function b(t) and a mean E(B).
Once the recovery is terminated, the repair will restart until the system is repaired and
begins to operate. The repair time for the system is cumulative, that is, the repaired time
of the system is still valid.

(5) Initially, the system in N begins to operate. All random variables are mutually
independent.

Remark 2.1. Let q = FA(u1, u2, · · · , um), p = 1 − q, then from assumption (2), p(q) is
the probability that the detected result of abnormal system is right (wrong).

3. Model Analysis. Let k = 1, 2, 3 represent the system is in NF, AF and Ã (the system
has accurately been detected as being in A), respectively. We define the possible states
of the system as follows:

State (0, n): the system in N is operating, and has been detected n times, n =
0, 1, 2, · · · ;

State (1, n): the system in A is operating, and has been detected n times, n =
0, 1, 2, · · · ;

State (2, k): the system is waiting for repair due to some unexpected events, k = 1, 2, 3;
State (3, k): the system is under repair, k = 1, 2, 3;
State (4, k): the system is waiting for remaining repair due to some emergencies,

k = 1, 2, 3.
Let S(t) be the system state at time t. For t ≥ 0, we define ξ1(t) as the elapsed detection

time at time t when S(t) = (0, n), (1, n) (n = 1, 2, · · · ), ξ2(t) the elapsed repair time of
the failed system at time t when S(t) = (3, k), (4, k), (k = 1, 2, 3), ξ3(t) the elapsed delay
time due to unexpected events at time t when S(t) = (2, k), (k = 1, 2, 3), and ξ4(t) the
elapsed repair recovery time due to emergencies at time t when S(t) = (4, k), (k = 1, 2, 3).
Then {S(t), ξ1(t), ξ2(t), ξ3(t), ξ4(t), t ≥ 0} is a vector Markov process.

At time t, the state probabilities of the system are defined as:

pin(t, x)dx = pr{S(t) = (i, n), x ≤ ξ1(t) < x + dx}, x > 0, i = 0, 1, n = 0, 1, 2, · · · ;

p2k(t, w)dw = pr{S(t) = (2, k), w ≤ ξ3(t) < w + dw}, w > 0, k = 1, 2, 3;

p3k(t, y)dy = pr{S(t) = (3, k), y ≤ ξ2(t) < y + dy}, y > 0, k = 1, 2, 3;

p4k(t, y, z)dz = pr{S(t) = (4, k), ξ2(t) = y, z ≤ ξ4(t) < z + dz}, y > 0, z > 0, k = 1, 2, 3.

In steady-state, we define

pin(x) = lim
t→∞

pin(t, x), i = 0, 1, pjk(w) = lim
t→∞

pjk(t, w), j = 2, 3,

p4k(y, z) = lim
t→∞

p4k(t, y, z), k = 1, 2, 3.
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According to Cox [12], the steady-state Kolmogorov forward equations that govern the
system can be written as follows:(

d

dx
+ λ1 + λ2 + α(x)

)
p0n(x) = 0, n = 0, 1, 2, · · · , (1)(

d

dx
+ λ3 + α(x)

)
p10(x) =

∞∑
n=0

λ2p0n(x)dx, (2)(
d

dx
+ λ3 + α(x)

)
p1n(x) = 0, n = 0, 1, 2, · · · , (3)(

d

dw
+ r(w)

)
p2k(w) = 0, k = 1, 2, 3, (4)(

d

dy
+ α + µk(y)

)
p3k(y) =

∫ ∞

0

b(z)p4k(y, z)dz, k = 1, 2, 3, (5)(
d

dz
+ b(z)

)
p4k(y, z) = 0, k = 1, 2, 3. (6)

The boundary conditions are

p00(0) =
3∑

k=1

∫ ∞

0

µk(w)p3k(y)dy, (7)

p0n(0) =

∫ ∞

0

α(x)p0,n−1(x)dx, n = 1, 2, 3, · · · , (8)

p10(0) = 0, (9)

p1n(0) = q

∫ ∞

0

α(x)p1,n−1(x)dx, n = 1, 2, 3, · · · , (10)

p21(0) =
∞∑

n=0

∫ ∞

0

λ1p0n(x)dx, (11)

p22(0) =
∞∑

n=0

∫ ∞

0

λ3p1n(x)dx, (12)

p23(0) = p
∞∑

n=0

∫ ∞

0

α(x)p1n(x)dx, (13)

p3k(0) =

∫ ∞

0

r(w)p2k(w)dw, k = 1, 2, 3, (14)

p4k(y, 0) = ap3k(y), k = 1, 2, 3. (15)

The normalization condition is
∞∑

n=0

∫ ∞

0

[p0n(x) + p1n(x)]dx +
3∑

k=1

[∫ ∞

0

p2k(w)dw +

∫ ∞

0

p3k(y)dy

+

∫ ∞

0

∫ ∞

0

p4k(y, z)dydz

]
= 1. (16)

To derive interesting reliability indices of the system, we define

H̄(t) = 1 − H(t), h∗(s) =

∫ ∞

0

e−sth(t)dt,

H̄∗(s) =

∫ ∞

0

e−stH̄(t)dt, s > 0, Λ = λ1 + λ2 − λ3.
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By the theory of first-order, linear, ordinary differential equations, we can obtain the
solution of the above Equations (1)-(16) as follows:

p0n(x) = p0n(0)e−(λ1+λ2)xH̄(x), n = 0, 1, 2, · · · ,

p10(x) =
λ2e

−λ3xH̄(x)p00(0)
(
1 − e−(λ1+λ2−λ3)x

)
(λ1 + λ2 − λ3) (1 − h∗(λ1 + λ2))

,

p1n(x) = p1n(0)e−λ3xH̄(x), n = 1, 2, 3, · · · , p2k(w) = p2k(0)V̄ (w), k = 1, 2, 3,

p3k(y) = p3k(0)Ḡk(y), k = 1, 2, 3, p4k(y, z) = p3k(0)aB̄(z)Ḡk(y), k = 1, 2, 3.

where

p0n(0) = [h∗(λ1 + λ2)]
np00(0), n = 1, 2, · · · , p11(0) =

qλ2p00(0) (h∗(λ3) − h∗(λ1 + λ2))

Λ (1 − h∗(λ1 + λ2))
,

p1n(0) = [qh∗(λ3)]
n−1p11(0), n = 2, 3, · · · , p10(0) = 0, p3k(0) = p2k(0), k = 1, 2, 3,

p21(0) =
λ1H̄

∗(λ1 + λ2)

1 − h∗(λ1 + λ2)
p00(0), p23(0) =

qλ2 (h∗(λ3) − h∗(λ1 + λ2))

Λ (1 − qh∗(λ3)) (1 − h∗(λ1 + λ2))
p00(0),

p22(0) =
λ2λ3p00(0)

Λ (1 − h∗(λ1 + λ2))

[
H̄∗(λ3) − H̄∗(λ1 + λ2)

+
qH̄∗(λ3)

1 − qh∗(λ3)
(h∗(λ3) − h∗(λ1 + λ2))

]
,

p−1
00 (0) =

λ2

Λ (1 − h∗(λ1 + λ2))

[
H̄∗(λ3) − H̄∗(λ1 + λ2)

+
qH̄∗(λ3) (h∗(λ3) − h∗(λ1 + λ2))

1 − qh∗(λ3)

]
+

1

λ1 + λ2

+ E(V )

+ (1 + aE(B))

{
λ1E(G1)

λ1 + λ2

+
pλ2E(G3) (h∗(λ3) − h∗(λ1 + λ2))

Λ (1 − qh∗(λ3)) (1 − h∗(λ1 + λ2))

+
λ2λ3E(G2)

Λ (1 − h∗(λ1 + λ2))

[
H̄∗(λ3) − H̄∗(λ1 + λ2)

+
qH̄∗(λ3) (h∗(λ3) − h∗(λ1 + λ2))

1 − qh∗(λ3)

]}
.

4. Reliability Indices. Based on the system assumptions and the results obtained in
Section 3, we easily derive some important reliability indices of the system as follows.

Theorem 4.1. (1) In steady state, let A0 (A1) denote the normal (abnormal) availability
of system, i.e., the probability that the system in N (A) is operating, then

A0 =
p00(0)

λ1 + λ2

, (17)

A1 =
λ2p00(0)

Λ (1 − h∗(λ1 + λ2))

[
H̄∗(λ3) − H̄∗(λ1 + λ2)

+
qH̄∗(λ3) (h∗(λ3) − h∗(λ1 + λ2))

1 − qh∗(λ3)

]
. (18)

(2) In steady state, denote pd and pI as the probability that the repair of system is delayed
and interrupted, respectively, then

pd = E(V )p00(0), pI = aE(B)
3∑

k=1

E(Gk)p2k(0). (19)
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(3) In steady state, denote p3l, l = 1, 2, 3 as the repair probability of the system in NF,
AF and A (the system has accurately been detected as being in A), respectively, then

p3l = E(Gl)p2l(0), l = 1, 2, 3. (20)

(4) In steady state, the inspection frequency of system in N or A, i.e., the rate of occurrence
of inspections of the system in N or A, denoted by Θ, is

Θ =
h∗(λ1 + λ2)p00(0)

1 − h∗(λ1 + λ2)
+

λ2p00(0) (h∗(λ3) − h∗(λ1 + λ2))

Λ (1 − qh∗(λ3)) (1 − h∗(λ1 + λ2))
, (21)

where p2l(0), l = 1, 2, 3, and p00(0) are given by Section 3.

Proof: (i) By the definitions of A0, A1, pd, pI and p3l, l = 1, 2, 3, we have

Ai =
∞∑

n=0

∫ ∞

0

pin(x)dx, i = 0, 1, pd =
3∑

k=1

∫ ∞

0

p2k(w)dw,

pI =
3∑

k=1

∫ ∞

0

∫ ∞

0

p4k(y, z)dydz, p3l =

∫ ∞

0

p3l(y)dy, l = 1, 2, 3.

Substituting the results in Section 3 into the above equations, we complete the proofs of
(1), (2) and (3).

(ii) By the system assumptions and the steady-state frequency formula in [13], it follows
that

Θ =
∞∑

n=0

∫ ∞

0

α(x)[p0n(x) + p1n(x)]dx.

Again by means of the obtained results in Section 3, we can complete the proof.

5. Optimal Cost Analysis. In this section, we construct the long-run expected cost
function per unit time for the multi-state repairable system presented by this paper, in
which the detection and diagnostic parameters are decision variables. Our objective is
to numerically analyze the optimal detection and diagnostic policy of the system while
maintaining a minimum cost. Let us define the following cost elements:

Cθ ≡ expected cost of each inspection;
CN (CA) ≡ detection cost per unit time when the system in N(A) is detected;
C3k ≡ repair cost per unit time when the system is in states (3, k), k = 1, 2, 3, respec-

tively;
Cd ≡ repair delay cost per unit time due to some unexpected events;
Cr ≡ repair recovery cost per unit time due to emergencies;

then the long-run expected cost function of the system per unit time is given by

C = CθΘ + CNA0 + CAA1 + Cdpd +
3∑

k=1

C3kp3k + CrpI ,

where Θ, A0, A1, pd, p3k and pI are given by Theorem 4.1.
For illustrative purpose, we set the values of system parameters and cost elements as

follows: λ1 = 1
660

, λ2 = 1
620

, λ3 = 1
65

, E(G1) = 25, E(G2) = 72, E(G3) = 30, E(V ) = 28,
CT = 50000, CN = 10000, CA = 15000, Cd = 12000, C31 = 20000, C32 = 25000,
C33 = 24000, Cr = 16000. Also, let us assume that the inter-detection time of the system
is deterministic with the mean v. Thus, we have

H(t) =

{
0, t < v,
1, t ≥ v,

H̄∗(λ1 + λ2) =
1 − e−(λ1+λ2)v

λ1 + λ2

, H̄∗(λ3) =
1 − e−λ3v

λ3

,

h∗(λ3) = 1 − λ3H̄
∗(λ3), h∗(λ1 + λ2) = 1 − (λ1 + λ2)H̄

∗(λ1 + λ2).
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Figure 1. The expected cost for different diagnostic and detection param-
eters u and v

In the first numerical experiment, we consider the case of the diagnosis parameter

having a distribution function FA(x) =
∫ x

−∞
1

20
√

2π
e
− (t−120)2

2×202 dt, which gives q = FA(u).

With Matlab 7.0 and the above given parameter values the cost C(u, v) for this case
is shown in Figure 1, in which we select the values of v from 20 to 100, and vary u
from 80 to 160. It is observed that a minimum cost value per unit time of 11723 is
achieved at u∗ = 100 and v∗ = 77.3023. So we know that in this case the optimal critical
values of diagnostic parameter and optimal expected detection period are 100 and 77.3023,
respectively.

For the second numerical example we suppose that the distribution function of diagnosis
parameter is given by

FA(x1, x2) =

∫ x1

−∞

∫ x2

−∞

1

2πσ1σ2

√
1 − ρ2

e−δ(x,y)dxdy,

where

δ(x, y) =
1

2(1 − ρ2)

[
(x − µ1)

2

σ2
1

+
(y − µ2)

2

σ2
2

+ 2ρ
(x − µ1)(y − µ2)

σ1σ2

]
,

µ1 = 110, µ2 = 140, σ1 =
√

477, σ2 =
√

426, ρ =
73

σ1σ2

,

then we get q = FA(u1, u2). The selection for other parameter values is same as the first
example.

In this case, the optimal critical values of diagnostic parameter and optimal expected
detection period are (u∗

1, u
∗
2) = (82.4123, 113.3671) and v∗ = 65.5237, respectively, and

the minimum cost per unit time is C (u∗
1, u

∗
2, v

∗) = 13624.

6. Conclusions. In this paper, we consider the optimal cost analysis for a multi-state
repairable system with repair delays and interruptions, in which the system has two
operating states and two failure states. By means of supplementary variable and the
theory of differential equation some important reliability indices are derived. We develop a
cost function for searching the joint suitable values of diagnostic and detection parameters.
Some examples have numerically illustrated the optimization cost. For future research,
one could consider the optimal diagnostic and detection policy for some complicated
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repairable systems. The results are planned to be reported later in some journals in the
field of reliability theory.
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