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Abstract. This paper investigates the stability issue of single-input single-output (SISO)
networked control systems (NCSs) with consideration of the network-induced delay and
channel noise. The communication network is characterized by network-induced delay
and the channel noise. The minimal value of signal-to-noise ratio (SNR) to stabilize the
networked system is obtained by frequency-domain approach. It is shown that the min-
imal value of SNR is dependent on the network-induced delay, the nonminimum phase
zeros and unstable poles of the given plant. The obtained result shows the relationship
among the stability of NCSs, structural characteristics of the given plant (non-minimum
phase zeros and unstable poles) and communication parameters (network-induced delay).
Finally, typical examples are given to illustrate the result.
Keywords: Network-induced delay, Signal-to-noise ratio (SNR), Networked control sys-
tems, Unstable poles

1. Introduction. The development of the communication technology combined the com-
munication network and the traditional control system, formed the network control sys-
tems (NCSs), using the communication channel to connect the sensor, controller and
actuator, and formed a real time closed loop spatial distribution feedback control system
[1, 2, 3]. Many advantages appeared with the introduction of the communication channel,
for example easy for maintenance and to expand, high reliability and safety. Just because
of this, networked control systems have been applied into many areas such as aerospace,
military, medical and automatic control [4, 5]. For the traditional control systems, the
nonminimun phase zeros and unstable poles could influence the performance limits, but
in networked control systems, the performance limits are not only constrained by these
factors but also influenced by the communication parameters. Therefore, at present, the
performance limit of NCSs has been an important research topic [6].

However, every thing has two sides; because of the realistic characteristics of the com-
munication network, some new constraints are generated, and networked control systems
have some disadvantages. In realistic situation, the bandwidth of the communication
network is not unlimited, called bandwidth constraint [7]; furthermore, data dropouts [8]
and network-induced delay [3, 9] will occur when the information transmitted through
bandwidth-limited communication channel. In addition, channel noise could also exist in
communication channel [10]. These constraints inevitably affect the performance of NCSs,
and even cause NCSs instability. The performance issue of SISO discrete-time NCSs with
network-induced delay was studied in [11]. The tracking performance of multiple-input
multiple-output (MIMO) NCSs with additive white Gaussian noise (AWGN) and the
scaling factor was studied in [12]. The performance issue of SISO networked control sys-
tems with the constraint of SNR was studied in [13]. The obtained result shows that the
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optimal tracking performance is constrained by communication network factors and the
internal structure of NCSs.

We study the stability issue of SISO NCSs with the network-induced delay and channel
noise. The stability condition of SISO NCSs is attained by using one-parameter compen-
sator structure and applying the methods of co-prime factorization, partial factorization
and spectral decomposition. It is shown that the minimal value of SNR is dependent on
the network-induced delay, the nonminimum phase zeros and unstable poles of the given
plant. The obtained result shows relationship among the stability of NCSs, structural
characteristics of given plant (non-minimum phase zeros and unstable poles) and com-
munication parameters (network-induced delay). The results also show that the stability
condition is determined by the plant’s internal structure and networked parameters, no
matter what compensator is adopted. These results will provide a guidance to the design
of networked systems.

The proposed model will be applied in lots of realistic systems, such as remote moni-
toring robot surgery, in which patient is considered as the plant, and robot is considered
as the controller. The remote expert obtains information by the network transmission,
and information from experts will be returned to the robot by the network transmission.
Thus, we study the relationship among the tracking performance, structural characteris-
tics of plant and communication parameters (network-induced delay and channel noise in
this paper).

The rest of the paper is organized as follows. Section 2 introduces some preliminaries.
In Section 3, we study stability analysis of networked control systems with the network-
induced delay and channel noise. Typical examples are given to illustrate the obtained
results in Section 4. The paper conclusions and future research directions are presented
in Section 5.

2. Preliminaries. The symbols used in this paper are standard. z denotes the conjugate
of a complex number z; for any vector u, define uT and uH as its transpose and conjugate
transpose, respectively. Let the open right-half plane be denoted C+ := {s : Re(s) > 0},
and the open left-half plane is C− := {s : Re(s) < 0}. Denote the Euclidean vector norm
as ∥ · ∥2, L2 is called the Lebesgue spaces standard frequency range and it has the inner

product < f, g >:= (1/2π)
∫ +∞
−∞ tr

[
fH(jw)g(jw)

]
dw. L2 can be decomposed into two

orthogonal subspace, and they are defined as H2 and H⊥
2

H2 :=

{
f : f(s) ∈ C+ ∥f∥2

2 := sup
σ>0

(1/2π)

∫ +∞

−∞
∥f(σ + jw)∥2

F dw < 0

}
,

H⊥
2 :=

{
f : f(s) ∈ C− ∥f∥2

2 := sup
σ>0

(1/2π)

∫ +∞

−∞
∥f(σ + jw)∥2

F dw < 0

}
.

Finally, RH∞ defines all stable, proper rational function.
We discuss the stability problem of SISO networked control systems with network-

induced delay such as Figure 1.
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Figure 1. The NCSs with network-induced delay
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In Figure 1, G represents the given plant and K is denoted as one-parameter compen-
sator, whose transfer function matrices are G(s) and K(s), respectively. y(t) and n(t)
are denoted as the system output signal and channel noise, respectively. ŷ(s) and n̂(s)
represent their Laplace transform, n̂(s) is assumed to be a zero mean white noise sequence
and variance Φ. τ represents the network-induced delay.

Furthermore, in the practical application, the energy of the communication channel
having an upper bound, is defined as

E
{
∥ŷ∥2} < Γ.

where Γ is the upper bound of energy of the communication channel.
According to Figure 1, we can get

ŷ = GK
(
e−τsŷ + n̂

)
. (1)

From [15], we have

Sŷ(jω) =
G(jω)K(jω)

1 − e−τsG(jω)K(jω)
Sn̂ŷ(jω).

Furthermore,

E
{
∥ŷ∥2} = P =

∥∥∥∥ GK

1 − e−τsGK

∥∥∥∥2

2

Φ (2)

where P is represented as input energy of communication channel. Denote the SNR such
as γ = P

Φ
; therefore, if the system is stable, γ = P

Φ
should meet∥∥∥∥ GK

1 − e−τsGK

∥∥∥∥2

2

<
P

Φ
. (3)

3. Stability Analysis of Networked Control Systems. The main goal of this paper
is to get the minimum SNR of the NCSs, which makes the system stable. We denote
P
Φ
≥ J∗, then

J∗ = inf
K∈K

∥∥∥∥ GK

1 − e−τsGK

∥∥∥∥2

2

. (4)

According to [16], every stabilizing compensator K can be expressed as Youla param-
eterization

K :=

{
K : K =

(Y − MQ)

X − NQ
, Q ∈ RH∞

}
(5)

and satisfy the Bezout equation such as

MX − NY = 1 (6)

where N, M ∈ RH∞.
For the transfer function e−τsG, we consider a coprime factorization of e−τsG as

e−τsG = NM−1. (7)

For the nonminimum phase transfer function, it could be factorized as the product of
the minimum phase part and all pass factor, and thus we have

N = e−τsLzNn, M = BpMm (8)

where Lz and Bp are represented as all pass factors and Nn, Mm are the minimum phase
parts; furthermore, Lz includes all the right half plane zeros of the plant zi ∈ C+, i =
1, · · · , Nz, Bp includes all the right half plane poles of plant pj ∈ C+, j = 1, · · · , Np, and
Lz and Bp can be decomposed respectively

Lz(s) =
Nz∏
i=1

s − zi

s + z̄i

, Bp(s) =

Np∏
j=1

s − pj

s + p̄j

(9)
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Theorem 3.1. Considering the network control systems such as Figure 1, in order to
make the network control systems stable, the SNR must be satisfied

P

Φ
>

Np∑
i,j=1

4Re(pj)Re(pi)

(p̄j + pi) b̄jbi

(
eτsL−1

z (pi)
)2

where bj =
Np∏
i∈N
i̸=j

pi−pj

pj+p̄i
.

Proof: According to (4), (5), (6), (7) and (8), we can get

J∗ = inf
Q∈Q

∥LzNn (Y − MQ)∥2
2 .

According to (8) and BP is represented as all pass factors, we can write

J∗ = inf
Q∈Q

∥∥∥∥NnY

Bp

− NnMmQ

∥∥∥∥2

2

.

According to partial fraction expansion

NnY

Bp

=

Np∑
j=1

p̄j + s

s − pj

Nn(pj)Y (pj)

bj

+ R1,

where R1 ∈ RH∞, bj =
Np∏
i∈N
i̸=j

pi−pj

pj+p̄i
, therefore

J∗ = inf
Q∈Q

∥∥∥∥∥
Np∑
j=1

(
p̄j + s

s − pj

− 1

)
Nn(pj)Y (pj)

bj

+ R1 +

Np∑
j=1

Nn(pj)Y (pj)

bj

− NnMmQ

∥∥∥∥∥
2

2

.

Because of
∑Np

j=1

(
p̄j+s

s−pj
− 1

)
Nn(pj)Y (pj)

bj
∈ H⊥

2 and
(
R1 +

∑Np

j=1
Nn(pj)Y (pj)

bj
− NnMmQ

)
∈ H2. Hence, we can get

J∗ =

∥∥∥∥∥
Np∑
j=1

(
p̄j + s

s − pj

− 1

)
Nn(pj)Y (pj)

bj

∥∥∥∥∥
2

2

+ inf
Q∈Q

∥∥∥∥∥R1 +

Np∑
j=1

Nn(pj)Y (pj)

bj

− NnMmQ

∥∥∥∥∥
2

2

.

From (6) and M(pj) = 0, after the calculation, we have

Nn(pj)Y (pj) = −eτpjL−1
z (pj).

Thus, J∗ can be obtained

J∗ =

∥∥∥∥∥
Np∑
j=1

(
p̄j + s

s − pj

− 1

)
−eτpjL−1

z (pj)

bj

∥∥∥∥∥
2

2

+ inf
Q∈Q

∥∥∥∥∥R1 +

Np∑
j=1

−eτpjL−1
z (pj)

bj

− NnMmQ

∥∥∥∥∥
2

2

.

Because Nn and Mm are the minimum phase parts and R1 ∈ RH∞, Q ∈ RH∞, we can
choose an appropriate Q, making

inf
Q∈Q

∥∥∥∥∥R1 +

Np∑
j=1

−eτpjL−1
z (pj)

bj

− NnMmQ

∥∥∥∥∥
2

2

= 0.

The proof is completed.
The obtained theorem shows that the SNR of NCSs is related to the nonminimum phase

zero, the unstable pole of given plant and the network-induced delay in the communication
channel.
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4. Illustrative Example. In this section, typical examples are given to illustrate the
efficiency of the result.

Example 4.1. Consider the given plant such as G(s) = s−0.2
(s−0.5)(s+3)

. In this plant, it is

clear to see that the unstable pole is located at p = 0.5 and nonminimum zero is z = 0.2.
According to the theorem, we can get the minimal SNR such as J∗ = 2.333eτ .
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Figure 2. The minimal SNR under different network-induced delay

From Figure 2, we can see that the minimum SNR is affected by the network-induced
delay of the communication channel, and it can also be seen that the larger the network
induced delay is, the greater the SNR of NCSs will be.

Example 4.2. Consider the unstable plant model described by

G(s) =
s − k

s(s − 2)(s + 1)
.
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Figure 3. The minimal SNR under different NMP zero
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This plant is a nonminimum phase. For any k > 0, the nonminimum phase zero is
located at z1 = k, and it has an unstable pole at p1 = 2.

τ 1 and τ 2 represent different network induced delay, respectively.

τ 1 = 0.5, τ 2 = 0.75

From Theorem, the stability value of SNR is obtained

J∗ = 4

(
e2τ 2 + k

2 − k

)2

.

The stability value of SNR with different NMP zero or networked induced-delay is shown
in Figure 3. It can be seen from Figure 3 that the stability value of SNR has been degraded
because of the networked induced-delay.

5. Conclusion. This paper studies the stability issue of networked control systems with
network-induced delay and channel noise constraints in communication channel. The
minimal value of SNR to stabilize the networked system is obtained by co-prime factor-
ization, partial factorization and spectral decomposition. The obtained result shows that
the minimal SNR is dependent on two aspects: one factor is the communication chan-
nel parameter such as network-induced delay and channel noise, the other aspect is the
internal structure of the given plant such as nonminimum phase zero and unstable poles.

Possible future extensions to this work include studying more general plants such as
multiple-input multiple-output nonlinear networked control systems, more complex chan-
nel model, e.g., the fading channel case, and more parameters of communication channel
constraints such as quantization effect, and the bandwidth effect.
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