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Abstract. Storing data into a two dimensional pixel image in the holographic data
storage (HDS) imposes new constraints in modulation codes. Conservative array con-
straint requires that in each row and column of a code array, a minimum number of 0↔1
transitions must occur. Several multimode coding for the conservative array for HDS
have been proposed. In this paper, balanced conservative guided scrambling (GS) multi-
mode coding and minimum running digital sum (MRDS) GS coding are formulated as
integer programming models. Also, simple neighborhood search heuristic replacing integer
programming model is introduced. In the simulation, the proposed models are compared
using randomly generated user data for various combinations of array size and control
bits.
Keywords: Holographic data storage, Guided scrambling, Integer programming

1. Introduction. Holographic data storage (HDS) system is regarded as the next-genera-
tion optical storage device with its high storage density (> 1 Tb/cm3) and fast data access
rate (> 1 Gbps). HDS records interference pattern of signal and reference beams as holo-
grams in thick photosensitive medium.

High storage density is achieved by superimposing multiple pages within a three-
dimensional medium. Also, data being recorded as a pixilated image, encoding and re-
trieving data can be parallelized easily, resulting in fast data access speed [1,2].

Unlike the previous optical data storage system where coded sequence is one-dimension-
al, new interference pattern between neighboring pixels and between pages occurs in HDS.
The role of the modulation code in HDS is designed to reduce variations in intensity dis-
tribution and inter-symbol interference. Examples of modulation constraints are balanced
distribution of ON and OFF pixels on a page, forbidden pattern such as OFF pixel sur-
rounded by ON pixels for low-pass filtering effect, the minimum and maximum numbers
of OFF pixels between any ON pixels in two-dimensional direction similar to run length
limited (RLL) code in optical storage system [3].

Another constraint for low-pass filtering objective requires that in each row and column
of the recorded array, there are at least t transitions of 0→1 or 1→0. A binary array of
this property is called conservative array of strength t [4-6]. For balanced conservative
array with cyclic strength t it was introduced using a cascaded coding scheme employing
two modulators. These algorithms require two (t− 2)-error correcting input codes which
are generated through first order Reed-Muller code or Bose-Chaudhuri-Hochquenghem
code.

Guided scrambling (GS) belongs to multimode coding and was applied to balanced
conservative arrays, too [7-10]. In GS, n bit source word is augmented with all the possible
binary sequences of length p and resulting 2p augmented sequences are scrambled to
generate a selection set consisting of 2p pseudo random sequences. Encoder then selects
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best candidate sequence from the selection set for transmission. For conservative array,
encoder selects the scrambled array with the maximum strength.

Similar to the strength in the conservative array, disparity in the binary sequence is
measured using running digital sum (RDS). For low-pass filtering, optical storages adopt
encoding based on minimum RDS (MRDS) or minimum variance of the RDS [11,12].

In this paper, we show that GS coding approach for the conservative array and MRDS
encoding can be formulated as integer programming models. Using the proposed model,
strength and MRDS values of GS coding are evaluated for various array sizes and control
bits. Also, we show that the proposed model can be applied to other RDS related selection
criteria GS coding.

This paper is organized as follows. In Section 2, we describe integer programming models
equivalent to balanced conservative array GS coding and MRDS GS coding. In Section
3, we compared average performance of the proposed models. Section 4 concludes this
paper.

2. Integer Programming Model of the Guided Scrambling Conservative Array.
In balanced conservative array GS coding, a source word of length n is preceded by p
control bits, and then n + p bits are scrambled through the self-synchronizing polynomial
to generate candidate code sequence. Self-synchronizing polynomial has a form ck = dk ⊕∑

i∈A aick−i, where dk is the augmented source word, ai ∈ {0, 1} coefficients, and ⊕ is the
modulo-2 addition. We describe our approach using polynomial ck = dk ⊕ ck−2 ⊕ ck−11.
Scrambled sequence (ck) is arranged as m × m array and encoder determines the best
candidate array that has the highest strength with balanced ‘0’ and ‘1’ pixels.

In the proposed integer programming model, the scrambling process ck = dk ⊕ ck−2 ⊕
ck−11, k = 1, . . . , n + p are modeled as a set of linear inequalities that are equivalent
to modulo-2 addition. Each modulo-2 addition y = x1 ⊕ x2 is substituted by the four
inequalities: y ≤ x1 +x2, y ≤ 2−x1 −x2, y ≥ x1 −x2, and y ≥ x2 −x1. Using associative
law for modulo-2 addition, any scrambling polynomial can be transformed to a set of linear
inequalities. In this paper, the linear inequalities representing y = x1 ⊕ x2 are denoted as
y = x1 ◦ x2.

In the following, scrambled code sequence ck, k = 1, . . . , n + p are arranged as m × m
matrix (ci,j). Then, a balanced scrambled code sequence satisfies the following constraints

si = di ◦ ci−2, ci = si ◦ ci−11, i = 1, . . . , n + p,
∑
ij

ci,j = m2/2,

di ∈ {0, 1}, i = 1, . . . , p, dp+i = bi, i = 1, . . . , n,
(1)

where d1, . . . , dp are control bits, b1, . . . , bn are source data, si are auxiliary variables for
associate law, and

∑
ij ci,j = m2/2 is the symbol balance constraint. Using modulo-2

addition, the number of 0↔1 transitions in row i is ci,1 ⊕ ci,2 ⊕ · · · ⊕ ci,m and can be
computed by a series of modulo-2 additions. Now the balanced conservative array GS
coding is formulated as the following integer programming problem.

zstrength = Max t
s.t. ui,j = ci,j+1 ◦ ci,j, ∀i, j wi,j = ci+1,j ◦ ci,j, ∀i, j

t ≤
∑
j

ui,j, t ≤
∑
i

wi,j, ∀i, j, constraints (1).
(2)

Here, variables ui,j(wi,j) are auxiliary variables to compute the number of transitions in
rows (columns) and

∑
j ui,j and

∑
i wi,j are the number of transitions in row i and column

j, respectively. (2) is a mixed integer programming model with 0-1 variables d1, . . . , dp.

(2) with the pseudo-balanced constraint has constraint
∣∣∣∑ij ci,j − m2/2

∣∣∣ ≤ b instead of∑
ij ci,j = m2/2.
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Another DC-suppression criteria used in GS coding are minimum running digital sum
(MRDS), minimum squared weight (MSW) and minimum threshold overrun (MTO)
[10,11]. We denote si,j as the RDS starting from ci,1 to ci,j in row i and ti,j RDS from c1,j

to ci,j in column j. Then si,j and ti,j are computed as

si,j = si,j−1 + 2ci,j − 1, j = 1, . . . , m, ti,j = ti−1,j + 2ci,j − 1, i = 1, . . . , m, (3)

where si,0 = 0, t0,j = 0, ∀i, j. The MRDS criteria is to choose candidate array minimizing
γ = maxi,j{|si,j|, |ti,j|}. Thus, γ satisfy the following inequalities

γ ≥ si,j, γ ≥ −si,j, γ ≥ ti,j, γ ≥ −ti,j, ∀i, j. (4)

Then, MRDS GS coding is formulated as the following integer programming problem

zMRDS = Min γ
s.t. constraints (1), (3), (4).

(5)

When the number of transitions in any row or column is tk, then, γ ≤ m − tk. Since
strength t is the minimum in any row or column, we have

γ ≤ m − t. (6)

3. Computer Simulation. We applied our model to randomly generated user data for
several array sizes ranging from 10× 10 to 20× 20 and control bit sizes from 6 to 10 bits.
For each array size and control bit, we generated 20 cases and in each case, the source data
are randomly generated from discrete uniform (0, 1). In Table 1, we record the average
strength values of 20 random instances for various combinations of control bit and array
size, with balanced and pseudo-balanced constraints. Strength value from the algorithm in
[4] guarantees the existence of strength t ≤ m/4 for m×m array if m = 2d using (m+1)2

control arrays. For d = 4, average strength in Table 1 is higher than 4 = 16/4. Also, in
algorithm from [6], the probability of balanced t-conservative array in the selection set is

about 0.5 and for
∣∣∣∑ij ci,j − m2/2

∣∣∣ ≤ 2 pseudo-balanced case, it approaches 1.0. These

estimates are obtained from simulation of 105 random instances. For each problem, the
strength from the balanced case is a lower bound for the pseudo-balanced case. For 10×10
balanced array, the average strength for the balanced and pseudo-balanced case is about
3 and as the number of control bits increases, the strength also increases. For the same
size array with pseudo-balanced case, the strength values are higher than the balanced
case. This trend is similar for every array size. The guaranteed minimum strength of the
pseudo-balanced 16 × 16 array is 4 in [5], while in our simulation, the observed average
strength is 7 in Table 1.

In Figure 1, we recorded average strength and zMRDS for array sizes ranging from 10×10
to 20 × 20 and control bits ranging from 6 to 10 for each array size. Also, we recorded
MRDS value computed from the optimal solution of model (2) (MRDS in zstrength). Notice
that MRDS value in the optimal solution of balanced conservative array is an upper bound

Table 1. Average strength for balanced and pseudo balanced arrays

balanced pseudo balanced

array size
number of control bits number of control bits

6 7 8 9 10 6 7 8 9 10
10 × 10 2.4 2.95 2.85 3.2 3.35 3 3.35 3.45 3.6 3.8
12 × 12 3.5 3.8 4.2 4.9 5.2 4.2 4.25 4.55 5 5.45
14 × 14 5.45 5.6 6.55 6.9 7.05 5.5 5.85 6.7 6.95 7.1
16 × 16 7.35 7.3 7.75 8.1 8.5 7.4 7.4 7.95 8.2 8.6
18 × 18 8.05 8.55 8.95 9.35 9.75 8.6 8.85 9.05 9.35 9.9
20 × 20 8 9.1 10 10.8 11.2 9.05 9.4 10.1 10.9 11.3
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Figure 1. zstrength, zMRDS and MRDS values for various control bit/array sizes

to zMRDS and the difference between these two values is limited within two. As the size
of the array increases, strength t increases almost linearly while zMRDS decreases with
the number of control bits but zMRDS values for same number of control bits are almost
similar for different array sizes. Similar trend can be found in MRDS values from model
(2).

4. Conclusions. In this paper, scrambling process using self-synchronizing polynomial is
formulated as set of linear inequalities and using these formulations, balanced conservative
array GS coding and MRDS GS coding for HDS are formulated as integer programming
models.

We find that the strength bound from the balanced conservative array GS coding in-
creases with the size of array and control bits, while the MRDS bound decreases with the
number of control bits. The proposed integer programming model does not require (t−2)-
error correcting code as input and also the average strength bounds obtained are higher
than the lower bound using cascaded coding in the previous algorithm [4]. As shown in
our simulation, conservative arrays show strong performance in terms of MRDS. With
respect to the run length limited (RLL) constraint, we found that the conservative arrays
have poor performance. We observed that there are long consecutive ‘0’s and ‘1’s in the
optimal conservative arrays. Note that in n bits with strength t, there is a possibility of
at most n−t−1 runs of the same symbol similar to Equation (6).

Based on the proposed integer programming model, one can evaluate the effect of
choosing different scrambling polynomial on the GS performance.
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