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ABSTRACT. Scale-Invariant Feature Transform (SIFT) is the most common feature de-
tection and matching algorithm in binocular images for robotic Simultaneous Localization
and Mapping (SLAM). This paper develops a SIFT-based robotic stereo visual navigation.
Besides, this paper proposes region-of-interest pyramid to increase a substantial number
of feasible features, and adopts mazimum-uncertainty comparability measurement to re-
duce the significant computation time of searching candidate matching features. FExper-
imental results indicate the proposed methods can improve original SIFT-based robotic
stereo visual navigation by over 400% increment of feature density at the similar cost of
computational time.
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1. Introduction. Stereo vision cameras have recently become the fundamental equip-
ment in intelligent robots, since it can provide richer contextual information in a com-
plex environment and broader intelligent applications than low-resolution sonar sensor or
laser range finder [1,2]. Through elaborate computer vision techniques, intelligent robots
equipped with stereo vision cameras can achieve extensive artificial intelligence like vi-
sual creatures, such as visual navigation, surveillance recognition, autonomous patrol,
emergency rescue, and unmanned vehicles.

In the methodology of the robotic stereo visual navigation, the feature detection and
matching algorithm to obtain enough representative features is the primary step followed
by Simultaneous Localization and Mapping (SLAM) based on Extended Kalman Filter
(EKF), path planning, and motion control. Against lots of feature detection and match-
ing algorithms for the robotic stereo visual navigation, such as SUSAN corner detector
[3,4] and Harris corner detector [5,6], Scale-Invariant Feature Transform (SIFT) [7,8] is
the most popularly-adopted one because of its characteristic invariant to image scale, il-
lumination, rotation, partial occlusion, clutter, distortion. However, amount of features
extracted by all aforementioned feature detection and matching algorithms, including
SIFT, are not many enough and not even enough for finer 3D environmental modeling
and mapping. Especially, SIFT is more computationally-expensive and time-consuming
such that it is difficult to accomplish high-refreshing visual navigation or real-time intel-
ligent applications.

Therefore, this paper proposes two methods to optimize the feature density and distri-
bution of SIFT-based robotic stereo visual navigation with a little extra computational
time. The organization of this paper is as follows. In the next section, SIF'T-based robotic
stereo visual navigation is developed by MATLAB toolkit and OpenCV library, and its
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methodology is illustrated step by step. Section 3 and Section 4 present the region-of-
interest pyramid and maximum-uncertainty comparability measurement, respectively, to
optimize the developed stereo visual navigation system in Section 2. Section 5 compares
and analyzes the experimental results. Finally, Section 6 draws conclusions.

2. SIFT-Based Robotic Stereo Visual Navigation. Figure 1 illustrates the flow-
chart of SIFT-based robotic stereo visual navigation developed by this paper. The flow
in Figure 1 must be continuously cycled. In the flowchart of Figure 1, the first stage is
to take two tiny-disparity images from binocular cameras. Here, the binocular cameras
have to be calibrated in advance for acquiring the intrinsic and extrinsic parameters of the
binocular cameras. This is because these intrinsic and extrinsic parameters, such as focal
length, principle point, rotation vector, and translation vector, are necessarily used and
substituted into the binocular stereo vision algorithm of the third stage to evaluate the
depth of all matched features. Then, it is possible to backproject the matched features
into 3D points for building a stereo depth model and map [9,10]. In this self-developed
system, this paper makes use of “Camera Calibration Toolbox for MATLAB” [11] for
camera calibration and camera parameters. The detailed calibration procedure is shown
in Figure 2.

The second stage is to detect and match representative features between two binocular
images through SIFT algorithm. However, the features detected by original SIFT are
often not distributed densely and evenly in high-contrast scenes as shown in Figure 3(a).
In Figure 3(a), there are no detected features at all in the floor region in an indoor scene.
Few and uneven features may be used to perform some object recognition or 2D computer
vision, but cannot be sufficiently used to realize 3D EKF-based SLAM. Thus, this paper
proposes a region-of-interest pyramid to overcome this issue rather than conventional
active vision, uncertainty measurement, or growing and pruning criterion [5,12].

In addition, as shown in Figure 3(b), some of features detected and matched by SIFT in
the second stage are actually not correct because the feature matching procedure depends
only upon the distance of SIFT descriptor vector of features without consideration of
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F1GURE 1. Flowchart of self-developed SIFT-based robotic stereo visual navigation
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FIGURE 2. Camera calibration procedure. (a) 8 x 8 planar checkerboard
image for calibration. (b) Loading calibration images for extracting the grid
corner and main calibration scheme. (c¢) Intrinsic and extrinsic parameters
exported from calibration.

(a)

FIGURE 3. Binocular image issues with (a) too few and uneven SIFT-based
features and (b) incorrect SIFT-based matched features

the relative location of features. In our developed system, this paper proposes 4 simple
relative-distance constraints to verify and filter out a few incorrect matched features. If
the matched features detected by SIFT conform to the following constraints as (1)-(4),
they are incorrect and should be removed.

|le ftimage. feature.y — rightimage. feature.y| > 3 (1)
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[le ftimage. feature.x < (image.width)/2] & & [rightimage. feature.x > (image.width)/2] (2)

leftimage. feature.x > rightimage. feature.z (3)

|le ftimage. feature.x — rightimage. feature.xz| < 3 (4)

where leftimage. feature.y and rightimage. feature.y mean the vertical coordinates of

the matched features in left-eye and right-eye images, respectively. In the same way,

leftimage. feature.x and rightimage. feature.x mean the horizontal coordinates of the

matched features in left-eye and right-eye images, respectively. image.width means the
image width in left-eye or right-eye images. The unit of the value in (1)-(4) is pixel.

The epipolar lines of the binocular cameras are parallel to each other and both parallel
to the ground. Equation (1) represents the vertical coordinate difference of some matched
feature between the left-eye and right-eye images should not happen, but a small error
margin (< 3) can be tolerant. Equation (2) means some matched feature on the left-half
plane of the left-eye image should not appear on the right-half plane of the right-eye image.
Equation (3) indicates some matched feature in the left-eye image should not appear more
right in the right-eye image. In addition, the matched features far away from the binocular
cameras should be ignored because of their inaccuracy and insignificance. Equation (4)
implies the matched features with minor disparity (< 3) are not taken into consideration.

The third stage is to perform the binocular stereo vision algorithm. The binocular
stereo vision algorithm is used to evaluate the depth of all matched features and estimate
every feature’s 3D coordinates where the coordinate system is originated at the location
of the binocular cameras and the height of the binocular cameras is given. Then, 3D
environmental modeling and mapping is finished.

Figures 4(a) and 4(b) illustrate the top view and side view of the binocular stereo
vision algorithm scheme, respectively. In Figure 4(a), Z means the depth distance between
the feature point and the binocular cameras, which is what the binocular stereo vision
algorithm expects to estimate. L is the distance between two cameras, which is a constant
given by the measurement. f is the focal length of the binocular cameras, which is also
a constant acquired by “Camera Calibration Toolbox for MATLAB”. As for dx; and
dx,, they mean the horizontal distances between the principal point of the camera and
the point projected from the feature point on the left-eye and right-eye image planes,
respectively. Thus, through trigonometric functions, the distance of the feature point, Z,
can be easily obtained by (5):

*
= dfiL (5)
x; + dx,

Besides, according to Figure 4(b), the height of the feature point can further be evalu-

ated by (6) and (7) if the height of the binocular cameras is given.

dy * Z
7 (6)

H=Y+h (7)

where Y means the vertical distance between the feature point and the epipolar line of the
binocular cameras. dy is the vertical distance between the principal point of the camera
and the point projected from the feature point on the binocular image planes. Z and f
are known parameters resulting from (5). h is a constant about the height of the binocular
cameras by measurement. H represents the height of the feature point from the ground.

Finally, after acquiring the horizontal distance, the depth distance, and the height
of every feature through the binocular stereo vision algorithm, 3D model and map can
be drawn. The resolution of 3D model and map depends heavily upon the density and
distribution of the effective features. Subsequently, the optimal path planning in the fourth
stage and the robotic motion control in the fifth stage can be easily worked out, as shown
in bottom-left part of Figure 1.
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FIGURE 4. (a) top view and (b) side view of the binocular stereo vision
algorithm scheme

However, the effective feature amount detected by the second stage of Figure 1 is usually
required to appear as high as possible for accurate 3D model and map. And, the flow in
Figure 1 is usually required to cycle itself as soon as possible for high-refreshing visual
navigation or real-time intelligent applications. So this paper studies these two issues in
the next two sections.

3. Proposed Region-of-Interest Pyramid. For too few and uneven SIFT-based fea-
tures issue in high-contrast scenes as shown in Figure 3(a), this paper proposes to segment
the image into several overlapped local regions as shown in Figure 5 and performs gray-
scale histogram equalization onto these region-of-interest pyramid individually, as shown
in Figure 6, before original SIFT-based feature detection and matching algorithm. In
Figure 5(a), the original image is partitioned into 7 subimages. And, there are 6 local
regions made up of some of these 7 subimages as shown in Figures 5(b)-(g). The index
number at the bottom-right corner of every local region in Figures 5(b)-(g) means which
portions of the original image in Figure 5(a) the local region is partitioned from. In fact,
due to the duplicate characteristic of the local region in Figure 5(g) and the insignificance
characteristic of the local region in Figure 5(b), the proposed local segmentation method
can be simplified and do not take the two local regions into account. The features detected
by original SIF'T in the other 4 local regions are abundant and even enough to almost
cover those in the local region in Figure 5(g). As for the features in the local region in

Figure 5(b) they are usually far away from the binocular cameras, and not urgent and
critical for SLAM.

4. Maximum-Uncertainty Comparability Measurement. In general, SIFT-based
features are extracted by the following 4 steps: 1) scale-space extrema detection, 2) fea-
ture point localization, 3) feature orientation assignment, and 4) feature descriptor vector.
However, the computational bottleneck of SIFT algorithm lies mostly in searching candi-
date matching features based on Euclidean distance of 128-dimensional feature descriptor
vectors between binocular images. Euclidean distance (Lo) is much more complex than
Cityblock distance (L;) and Chessboard distance (Lg). And, Euclidean distance (Lo)
must be smaller than Cityblock distance (L), but larger than Chessbard distance (Lg).

Thus, this paper adopts uncertain comparability measurement as (8) to break the
computation bottleneck of searching candidate matching features. In short, this paper
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FIGURE 5. (a) Original image, (b)-(g) local regions partitioned from the
original image

FIGURE 6. (a) Original color image, (b) SIFT-based features in (a), (c)
SIFT-based features in histogram-equalized (a), (d) SIFT-based features in
histogram-equalized and gray-scale (a)

replaces the computation of Euclidean distance with (8) to further simplify the proposed
region-of-interest pyramid.

LO = OzLJ + ﬂLQ (8)
Here, o and  are constants by the empirical rule. However, this paper directly chooses
0.5 for both a and (3 in view of maximum uncertainty principle [14]. Meanwhile, the
ratio of the nearest neighbor distance to the second nearest neighbor distance for the
rejection constraint of the matched features must be refined from 0.8 to 0.7, that is, the
matched features are reserved only if the distance ratio is less than 0.7. This is because this
reconfiguration can raise the robustness of SIFT, especially when maximum-uncertainty
comparability measurement is applied.

5. Experimental Results. In this paper, most of the developed system and experi-
mental results are implemented by C code and OpenCV library, except that the camera
pre-calibration and 3D mapping are run by MATLAB. In the developed and optimized
SIFT-based robotic stereo visual navigation implementation, the binocular cameras are
totally the same type and specification. Resolution of all binocular images is 640 x 480.
The scene in the experiments is only indoors with some obstacles.

Figures 7(a) and 7(b) show the feature scenes of some indoor space image detected by
original SIFT and the proposed SIFT, respectively. From the comparison of Figures 7(a)
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FIGURE 7. Feature scenes detected by (a) original SIFT and (b) proposed SIFT

TABLE 1. Feature amount comparison

Scene 1 Scene 2 Scene 3
Original SIFT 693 (points) 1060 (points) 759 (points)
Proposed SIFT | 4516 (points) | 5809 (points) | 4125 (points)
Increment ratio 552% 448% 443%

and 7(b), it is obvious that the proposed SIFT can generate the detected features more
densely and evenly, especially in high-contrast scenes. Table 1 displays the experimental
comparison of the detailed feature amount in various scene images detected by original
SIFT and the proposed SIFT. From Table 1, it is seen that the proposed SIF'T can improve
original SIFT-based robotic stereo visual navigation by over 400% increment.

After the feature extraction step in Figure 7(b), the feature pairs of binocular images
are matched and filtered by the proposed SIFT. It is obvious that the proposed SIFT can
generate the matched feature pairs more densely and evenly, especially in high-contrast
scenes. Finally, the front view and top view of the 3D model and map can be generated
through the binocular stereo vision algorithm.

6. Conclusions. SIFT-based feature detection and matching algorithm is the key tech-
nology for robotic stereo visual navigation. Rather than complex or inefficient algorithms,
this paper adopts region-of-interest pyramid and maximum-uncertainty comparability
measurement to increase the SIFT-based feasible features and decrease the execution
time of SIFT simultaneously. Thereby, the 3D model and map drawn by the proposed
robotic stereo visual navigation is finer and better, and the subsequent stages of path
planning and motion control can also be easily worked out.
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