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Abstract. About the quantitative analysis of coal mining subsidence areas, this pa-

per discusses utilization of multi-temporal and multi-sensor remote sensing imaging to

achieve the dynamic evolution analysis of monitoring coal mining subsidence areas. The

method is to conduct geometric correction and geographic location registration on selected

aerial photographs, TM\ETM, SPOT1 and SPOT5 images, to improve the interpretation

ability of remote sensing imaging through the method of data fusion based on the spectral

fidelity of constant energy principles, and to adopt the secondary fusion processing of

digital terrain information and remote sensing imaging to gain a comparative analysis of

the scopes and causes of the distribution change in subsidence areas at different times.

The test showed that data fusion based on the spectral fidelity of constant energy princi-

ples and the secondary fusion method of digital terrain information and remote sensing

imaging could accurately depict the dynamic evolution process of coal mining subsidence

areas.
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1. Introduction. The environmental geological effect caused by coal mining in mining
areas is the most noticeable ground surface subsidence in goaves, where the impact is
long-term and complicated. It not only renders a great deal of land resources unable for
use every year, but also jeopardizes surface buildings, which results in great losses. At
present, the main monitoring method in coal mining subsidence areas is to lay the surface
movement observation stations above the working surfaces, and adopt leveling and GPS
surveying to regularly observe the surface subsidence and horizontal movement caused by
mining. This method is only suitable for monitoring the movement and deformation of
small areas, and unable to satisfy the large-scale monitoring tasks of diggings. In addition,
this method requires significant workloads and is unable to intuitively and conveniently
reflect the distribution of ground surface subsidence. Meanwhile, this method is one kind
of point measurement, from which it is difficult to obtain the panoramic distribution
information of continuous space coverage.

Satellite remote sensing imaging possesses macroscopic, objective, comprehensive, dy-
namic and rapid characteristics. Using the Huainan Mining Area as a pilot, this research
carries out remote sensing surveying and monitoring regarding coal mining subsidence,
which aims at obtaining the dynamic change information of subsidence areas, providing
a scientific basis for developing the reclamation and governance of subsidence areas as
well as the restoration and reconstruction of the ground surface eco-environment. The
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utilization of remote sensing technology in diggings has experienced development from
early aerial remote sensing to current satellite remote sensing. Many domestic scholars,
including Sheng et al. (2001) [1], Peng et al. (2002) [2], Chen (2003) [3], Chen et al. (2004)
[4], Hu et al. (2005) [5], Wu and Shi (2004) [6], Ma et al. (2011) [7], Li et al. (2014) [8],
respectively utilized aerial and satellite imaging, ERS-1/2 radar data of coal mining areas
to conduct environmental monitoring and eco-environment surveying. Many researches
showed that each phase distribution and precise scope of the subsidence area can be
extracted easily by processing and analyzing the multi-temporal high spatial resolution
optical images.

2. Remote Sensing Data Processing.

2.1. Data selection. The sensing data sources selected by this research include Land-
sat TM (ETM), SPOT1 (PAN) and SPOT5 (PAN, B-1/2/3/4). Huainan Mining Area
is relatively low and there are permanent rivers nearby, and the ground surface subsi-
dence areas have a close relationship with water body distribution. Researchers selected
satellite remote sensing imaging from different periods which were in the same season
and had relatively stable water body distribution. According to the local meteorological
data analysis, the rain is comparatively little and the surface water body is relatively
stable in the Huainan Mining Area from December to May. For the sake of contrast
analysis, the Landsat TM (ETM) imaging during the above period from different years
was selected, and the multi-temporal feature of Landsat and the high-resolution feature
of SPOT imaging were used to conduct a coal mining subsidence situation survey.

2.2. Geometric correction and geographic location registration of imaging. Ac-
cording to the relationship between remote sensing imaging from different time phases and
topographic map coordinates, imaging from different time phases is conducted using geo-
metric correction processing, which enables such processing and geographical position
registration among different imaging to be ultimately achieved. Although this process
completes two tasks, it actually only requires execution of one-time spatial transformation
processing on images. Thus, the loss of imaging information is reduced, which is a bet-
ter image processing method. Quadratic polynomials are adopted to conduct coordinate
transformation, cubic convolutions are used to conduct gray resampling, the matching
precision of remote sensing imaging and corresponding scale topographic maps can be
within 0.5 pixels (TM/ETM remote sensing imaging and a 1 : 50, 000 scale topographic
map; SPOT5 panchromatic remote sensing imaging and a 1 : 10, 000 scale topographic
map), and mapping deviation of imaging can be controlled within 0.2mm, which means
it is essentially able to meet the spatial geometry accuracy requirements of corresponding
scales.

2.3. Image data fusion. Remote sensing imaging data fusion processing technology
can convert the remote sensing imaging of different spatial, spectral and time resolution
ratios to the uniform time-space coordinate system with the same spatial resolution ratio,
forming a group of new spatial information, namely, fusion into a group of new remote
sensing imaging. The fusion technology can perfect the display quality of imaging and
improve the interpretation ability of remote sensing imaging. Researchers adopt the
following imaging fusion methods [9].

(1) Calculate the average brightness value of the sub-pixels of high-resolution imaging.
For the pixel anywhere (x, y) on low-resolution imaging, its corresponding sub-pixels of
high-resolution imaging are (nx + i, ny + j) (i, j = 0, 1, 2, . . . , n − 1), and n = SpatialLow

SpatialHigh

is the spatial resolution ratio of two kinds of imaging. The brightness values of imaging
pixels are respectively denoted as DNLow(x, y) and DNHigh(nx+i, ny+j), and the average
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brightness value DNHigh of a group of sub-pixels of high-resolution imaging is calculated
in accordance with Equation (1):

DNHigh(x, y) =
1

n2

i=n−1, j=n−1∑

i=0, j=0

DNHigh(nx + i, ny + j) (1)

In the equation, x, y = 0, 1, 2, 3, . . ..
Every pixel on low-resolution imaging has a group of corresponding sub-pixels and the

brightness value of the sub-pixels on high-resolution imaging.
(2) Calculate the brightness difference of the pixels on different resolution imaging.

Every pixel on low-resolution imaging has a certain brightness difference with the pixel at
the corresponding position on high-resolution imaging. This value is a function of pixel
position (x, y), and set as g(x, y). Its expression is

g(x, y) = DNLow(x, y) − DNHigh(x, y) (2)

(3) Summation. Add the brightness difference calculated through Equation (2) to every
corresponding sub-pixel on high-resolution imaging, forming a new sub-pixel brightness
value.

DN ′

High(nx + i, ny + j) = DNHigh(nx + i, ny + j) + g(x, y) (3)

DN ′
High(x, y) = DNLow(x, y) can be obtained through the deducting process of Equa-

tion (3). After fusion, the average brightness value of a group of sub-pixels on imaging
equals the brightness value of corresponding pixels on low-resolution imaging; specifically,
within the range of one pixel on low-resolution imaging, the spectral energy of fusion
and low-resolution images is invariant, and the spectral information gains fidelity. Con-
sequently, the fusion imaging obtained through this method not only keeps the spectral
efficiency of low-resolution imaging invariable, but also possesses the spatial features of
high-resolution imaging. Figure 1 is TM imaging and the fusion of TM and SPOT1 PAN
imaging.

Figure 1. TM image and its fusion with SPOT1 PAN image

2.4. Thematic information processing of remote sensing imaging. The ground
storage in the Huainan Mining Area is shallow. Large-area ponding is the main character-
istic of coal mining subsidence areas, and the scope changes of a water body have a close
relationship with subsidence changes. Water bodies and subsidence areas [10,11] can be
extracted in a relatively accurate fashion through remote sensing imaging classification
techniques, and meanwhile, digital terrain information and remote sensing imaging are
conducted using fusion processing, so that the two sets of data can be gathered onto one
image, which is conducive to conducting a comparative analysis [12-16] on the scopes and
causes of water body distribution changes at more than one period, providing actual and
objective plane data for the survey in coal mining subsidence areas. Taking the water
body distribution diagram discerned by remote sensing imaging in 1994 as an early image,
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Figure 2. Schematic diagram of water body changes in mine from 1994 to 2011

and using the water body distribution diagram discerned by remote sensing imaging in
2011 as the current image, Figure 2 is a fusion image which is generated through fea-
ture fusion processing. In the figure, the blue represents comparatively permanent pool
zones, the red is newly increased pool zones and the yellow denotes ponding disappear-
ance zones. Figure 2 clearly reflects the water body distribution change situation in the
Huainan Mining Area from 1994 to 2011.

3. Remote Sensing Imaging Analysis of Coal Mining Subsidence Areas.

3.1. Current situation and main distribution characteristics of subsidence ar-

eas. By the end of 2011, the area of the coal mining subsidence area of the Huainan
Mining Area had reached 50.58km2, in which the area of subsidence of the west mining
area (from the Kongque mine to the Li Yingzi mine) is 37.06km2, and the area of subsi-
dence of the Jiulong Hill and Datong Mine is 13.52km2. The data of underground goaves
in the Huainan Mining Area are provided by the Huainan Mining Group.

3.2. Kongji Coal Mines – Bagong Mountains – the Cai’s Hill Area. The sub-
area, whose ranges of longitude and latitude are 116◦46′06′′E-116◦55′54′′E and 32◦34′51′′N-
32◦42′43′′N, is located in the west of the Huainan Mining Area. This area is an important
coal mining subsidence area in the Huainan region, and the totality displays irregular
distribution with northwest-southeast orientation. Table 1 is the water body distribution
change at different periods (taking the water body distribution in 1994 as an early image
and taking the water body distribution in other periods as the current image). It can be
seen from Table 1 that, when the areas of newly increased pool zones and water body
disappearance zones are relatively large, the corresponding times are 2009, 2010 and 2011,
which indicates that the water body distribution changes are relatively big during these
periods. In consideration of the fact that the water body image in 2009 was gained from
remote sensing imaging conducted on July 11th, 2009, and that time was during the
rainy season in the Huainan Mining Area, which has a certain difference from the remote
sensing imaging during the non-rainy season, they do not have comparability. Therefore,
the remote sensing imaging of 2009 is not considered in the contrast analysis of imaging.

Figure 3 is the boundary characteristics fusion image of the remote sensing image of 2011
and the water body distribution change characteristics from 1994 to 2011, in which the
white line is the boundary of a relatively permanent pool zone, and the yellow line is the
boundary of an impounded surface water disappearance zone. Upon field investigation,
it was discovered that most water body disappearance areas corresponded to subsidence
landfill areas. For example, the Lizuizi Mining Area (B1) and the Xinzhuangzi Mining
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Table 1. Water body changes in Kongji and Bagong Mountains and Cai-
jiagang Mine from 1994 to 2011

(unit: pixel)

Time
Other surface Water body disapp- Newly increased Relatively perma-

feature earance zones pool zones nent pool zones
1994.04 887854 17518 9558 74470
1996.04 876362 12896 21050 79092
1997.04 878663 18749 16437 75551
1997.12 881304 16218 16108 75770
1998.10 878133 20104 19279 71884
2000.04 866012 11743 31400 80245
2001.12 876497 18083 20915 73905
2002.12 877279 22664 20133 69324
2003.12 873471 20806 23941 71182
2004.03 862505 34907 14857 77131
2004.08 866638 23775 30774 68213
2005.04 857676 39736 13079 78909
2005.11 871243 20516 26169 71472
2006.12 866531 30881 17236 74752
2007.04 866531 17236 30881 74752
2008.04 864221 17783 33191 74205
2009.07 858501 27452 38911 64534
2010.03 858373 17954 39039 74034
2011.05 859766 19769 37646 72219

Figure 3. Feature fusion image of water body changes in Kongji and
Bagong Mountains and Caijiagang district

Area to the Xieyi Mining Area (B2) are both coal gangue landfill areas. Large-area newly-
increased pool zones correspond to the ground surface subsidence areas forming in recent
years. For example, the displayed locations of A1 (the Erdao River), A2 (the Xinzhuangzi
Mine) and A3 (the Xieer Mine) are newly-increased pool zones.
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4. Conclusions. (1) Remote sensing imaging is selected as data sources and imaging
classifications, along with multi-source and multi-temporal imaging fusion techniques, are
utilized, which enables one to relatively accurately extract the dynamic change infor-
mation of coal mining subsidence areas and give full play to the characteristics of the
speediness, accuracy and strong periodicity of remote sensing techniques.

(2) Utilizing remote sensing imaging at different periods can also reflect the compre-
hensive treatment information of subsidence areas and the changing information of land
resources, providing reliable basic data for the comprehensive management of the en-
vironment in mining areas, which is an effective means for dynamically monitoring the
environment in mining areas.

(3) Mining areas are mainly located at the mountain front plain areas, south of the
Huai River, where the terrain is gentle and low-lying and groundwater resources are
abundant, bringing out relatively large-scale ponding in every coal mining subsidence area.
Consequently, further research on the depth and scope of ponding and the changes of water
body environments is one significant application of the dynamic evolution monitoring of
subsidence areas.
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