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Abstract. Correct identification of the source of process disturbance for a multivari-
ate process is an important research issue and has excited considerable interest in re-
cent years. There have been many methods developed for detection of the source of pro-
cess shifts, either by statistical-based approaches or machine learning techniques. In this
study, we employ two computational intelligence approaches, artificial neural networks
(ANN) and multivariate adaptive regression splines (MARS), to classify the sources of
variance shifts in a multivariate normal process. The five quality variables are consid-
ered in the multivariate process. In addition, the simulation experiments are conducted
to evaluate the performance of the ANN and MARS approaches.
Keywords: Multivariate normal process, Variance shift, Artificial neural networks, Mul-
tivariate adaptive regression splines

1. Introduction. With the recent development of production and sensing techniques,
the monitoring and diagnosis of multivariate process data have attracted considerable
attention in industrial research. The multivariate process control charts have played an
important role in industry, and are a useful tool and widely used for detecting multivariate
process disturbance because quality characteristics are usually highly correlated. The
multivariate control charts would be able to trigger a signal when disturbance occurred in
the multivariate process. However, it is difficult to determine which quality characteristics
are responsible for this signal. Consequently, the recognition of the source of process shifts
becomes a very important research issue in industry.

There have been many studies that investigated the identification of the source of pro-
cess shifts. Most of these studies have devoted to the determination of the source of either
mean shifts or variance shifts for a multivariate normal process. These methods can be
divided into two lines. On the first line basically the methods were developed using the
statistical-based approaches [1-4]; on the second line the methods were developed on the
basis of machine learning techniques [5-10]. This study focuses on the use of computa-
tional intelligence approaches to determine the possible sets of quality variables that are
responsible for process variance shifts. Due to the fact that they possess the excellent fore-
casting and/or classification capability, this study considers the artificial neural networks
(ANN) and multivariate adaptive regression splines (MARS) as the proposed approaches
[11-16].

The structure of this study is organized as follows. Section 2 addresses the structure of
a multivariate normal process and the variance shifts. Section 3 describes the proposed
approaches for determining the source of variance shifts for a multivariate normal process.
Section 4 states the simulation results. The final section provides the research findings
and presents a conclusion to complete this study.
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2. The Structure of the Process and Variance Shifts. Assume that a multivariate
normal process is monitored by an |S| control chart on p quality characteristics. Let

Xi˜ = [Xi1, Xi2, . . . , Xip]
′ , i = 1, 2, . . . , n (1)

be a p× 1 vector which denotes p characteristics on the ith observation with multivariate
normal distribution. The corresponding sample covariance matrix is

S =
1

n − 1

n∑
i=1

(
Xi˜ −X˜

)(
Xi˜ −X˜

)′

(2)

where X˜ = 1
n

∑n
i=1 Xi˜ . Let Σ0 be the in-control covariance matrix which is defined as

follows:

Σ0 =



σ1,1 σ1,2 · · · σ1,j · · · σ1,p

σ2,1 σ2,2 · · · ... · · · σ2,p
...

...
. . .

... · · · ...

σi,1 · · · ... σi,j · · · ...
...

...
...

...
. . .

...
σp,1 σp,2 · · · σp,j · · · σp,p


p×p

(3)

To monitor a multivariate process variance shift, we can apply the sample generalized
variance |S|, and the following control limits proposed by [17]:

UCL = |Σ0|
(
b1 + 3

√
b2

)
LCL = max

(
0, |Σ0|

(
b1 − 3

√
b2

)) (4)

where

b1 =
1

(n − 1)p

p∏
i=1

(n − i)

b2 =
1

(n − 1)2p

p∏
i=1

(n − i)

(
p∏

i=1

(n − i + 2) −
p∏

i=1

(n − i)

) (5)

When an |S| control chart generates the out-of-control signals, the problem accompa-
nied is how to determine variables that are assignable as responsible for these signals.
Apparently, if we monitor p quality variables simultaneously, there are 2p − 1 possible
types of variance shifts. Let Σ1 be the out-of-control covariance matrix. This study
adopts the suggestion of [6] and considers the following variance shift as the process fault:

Σ1 =



σ1,1 σ1,2 · · · θσ1,j σ1,j+1 · · · σ1,p

σ2,1 σ2,2 · · · θσ2,j σ2,j+1 · · · σ2,p
...

...
. . .

...
... · · · ...

θσi,1 θσi,2 · · · θ2σi,j θσi,j+1 · · · θσi,p

σi+1,1 σi+1,2 · · · θσi+1,j σi+1,j+1 · · · σi+1,p
...

...
...

...
...

. . .
...

σp,1 σp,2 · · · θσp,j σp,j+1 · · · σp,p


p×p

(6)

where θ is the inflated ratio.

3. The Methodologies. In this section, this study presents the modeling concept of
ANN and MARS.
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3.1. Artificial neural networks. ANN is a parallel system comprised of highly inter-
connected processing elements that are based on neurobiological models. ANN processes
information through the interactions of a large number of simple processing elements, the
neurons. ANN modeling can be described briefly as follows. The relationship between
output (y) and inputs (x1, x2, . . . , xa) in an ANN model can be formed as:

y = α0 +
b∑

j=1

αjg

(
δ0j

+
a∑

i=1

δijxi

)
+ ε (7)

where αj (j = 0, 1, 2, . . . , b) and δij (i = 0, 1, 2, . . . , a; j = 0, 1, 2, . . . , b) are model connec-
tion weights; a is the number of input nodes; b is the number of hidden nodes, and ε is
the error term. The transfer function in the hidden layer is often represented by a logistic
function,

g(z) =
1

1 + exp(−z)
(8)

Accordingly, the ANN model in Equation (7) accomplishes a nonlinear functional map-
ping from the inputs (x1, x2, . . . , xa) to the output y,

y = f(x1, x2, . . . , xa, w) + ε (9)

where w is a vector of all model parameters, and f is a function determined by the ANN
structure and connection weights.

3.2. Multivariate adaptive regression splines. The general MARS function can be
described as follows.

f̂(x) = b0 +
M∑

m=1

bm

Km∏
k=1

[Skm(xv(k,m) − tkm)] (10)

where b0 and bm are the parameters, M is the number of basis functions (BF), Km is the
number of knots, Skm takes on values of either 1 or −1 and indicates the right or left
sense of the associated step function, v(k, m) is the label of the independent variable, and
tkm is the knot location. The optimal MARS model is chosen in a two-step procedure.
Firstly, construct a large number of basis functions to fit the data initially. Secondly, basis
functions are deleted in order of least contribution using the generalized cross-validation
(GCV) criterion. To measure the importance of a variable, we can observe the decrease
in the calculated GCV values when a variable is removed from the model. The GCV is
defined as follows:

LOF
(
f̂M

)
= GCV(M) =

1

n

n∑
i=1

[
yi − f̂M(xi)

]2/[
1 − C(M)

n

]2

(11)

where n is the observations and C(M) is the cost penalty measures of a model containing
M basis function.

4. Simulation Results. The computer experiments were performed in order to show
the performance for two computational intelligence approaches. This study considers 5
quality characteristics for a multivariate normal process, and consequently, we have 25−1
possible types of variance shifts. They are represented by (1, 0, 0, 0, 0), (0, 1, 0, 0, 0), . . . ,
and (1, 1, 1, 1, 1), where 1 denotes a quality characteristic that is at fault and 0 denotes
a quality characteristic that is not at fault. For an abnormal variance vector structure,
this study considers five types of variance shifts for demonstration, and they include
(1, 0, 0, 0, 0), (1, 1, 0, 0, 0), (1, 1, 1, 0, 0), (1, 1, 1, 1, 0) and (1, 1, 1, 1, 1). Also, this study
considers the case of θ = 0.8 and the sample size n = 10.

For the ANN and MARS modeling approaches, we have 5 input variables. They are the
averaged sample for the five quality variables in a process, and they are denoted by X1,
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X2, X3, X4 and X5, respectively. There is only one output node (Y ) for all two models.
This output node indicates the classification results of the types of process variance shifts,
where a value of 0 implies that the process is the actual type of the underlying process
variance fault, a value of 1 implies that the actual type of the process variance fault is
not recognized. In this study, we assume that the underlying process variance fault is the
type of (1, 1, 1, 0, 0).

In this study, the training data sets include 1000 data vectors. Whereas the first 500
data vectors are all from the process variance fault of (1, 1, 1, 0, 0), data vectors from 501
to 1000 are from other types of process variance faults. This study employs the testing
data sets of 400. The first 200 data vectors are all from the process variance fault of
(1, 1, 1, 0, 0), and data vectors from 201 to 400 are from other types of process variance
faults.

Table 1 displays the simulation results for the accurate identification rates (AIR) of
the two approaches. Observing Table 1, it is apparently seen that the ANN approach
outperforms the MARS approach. Also, the overall averaged AIR is 66.25% and 63.44%
for ANN and MARS respectively.

Table 1. AIR for four combinations of process variance faults

Combination of variance faults ANN ({ni-nh-no}) MARS
(1, 1, 1, 0, 0) vs. (1, 0, 0, 0, 0) 67.75% ({5-9-1}) 65.50%
(1, 1, 1, 0, 0) vs. (1, 1, 0, 0, 0) 64.25% ({5-11-1}) 60.00%
(1, 1, 1, 0, 0) vs. (1, 1, 1, 1, 0) 62.50% ({5-9-1}) 63.25%
(1, 1, 1, 0, 0) vs. (1, 1, 1, 1, 1) 70.50% ({5-9-1}) 65.00%

5. Conclusions. In this paper, the ANN and MARS approaches are proposed to recog-
nize the quality variables at fault when variance shifts have occurred in a multivariate
normal process. The proposed ANN approach is superior to the MARS approach.

The proposed ANN and MARS models in this study are effective in recognizing the
types of process variance faults. However, some other computational intelligence tech-
niques, such as support vector machine, rough set or genetic algorithms, can be applied
to further refine the structure of the classifiers. Extensions of the proposed procedures to
data-driven design or real-time implementation of fault tolerant control system are also
possible.
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