SMART SERVICE COORDINATION AND MANAGEMENT OF DIGITAL SPACE AND SOME CASES

Dongsoo Kim¹, Seung Sik Yoon² and Taesoo Lim^{3,*}

¹Department of Industrial and Information Systems Engineering Soongsil University No. 369, Sangdo-Ro, Dongjak-Gu, Seoul 06978, Korea

> ²Ubidus Corporation Seoul, Korea

³Department of Computer Engineering Sungkyul University Sungkyul Daehak-ro 53, Anyang City 14097, Korea *Corresponding author: teshou@gmail.com

Received July 2015; accepted September 2015

ABSTRACT. Rapid development of ubiquitous technologies has made it possible to change traditional service spaces into intelligent service spaces, which gives interactive and responsive experiences to people. Such space includes smart home, museum, shop, exhibition space, conference room and so on. In this paper, we present a smart design procedure, framework and solutions to design, implement and manage the intelligent space. Our procedure considers the characteristics of digital space consisting of space, information and program. We developed operation platform called UbiTools and using the platform, successfully constructed smart coordination systems in various digital spaces. **Keywords:** Ubiquitous platform, Smart coordination, Digital space

1. Motivation. With the rapid development of embedded system, distributed and mobile computing technologies, more and more intelligent space are established around us, such as smart meeting room, smart home, intelligent museum, and digital library. Meanwhile, ubiquitous computing technology has received an intensive interest in the past years to realize the intelligent space [1]. Ubiquitous technology aims at providing any intelligent services at anytime, anywhere with the integration of machine and human through internet and other communication technologies.

The technology has consistently evolved and produced M2M (Machine to Machine) and IoT (Internet of Things) nowadays. IoT can be defined as hyper-connected network environments, in which information is produced and shared via wire and/or wireless network connecting every things including human [2]. As we can see hyper cycle of digital business technologies presented by Gartner group in 2014, the technology is one of the most interesting and promising technologies (Figure 1).

To keep up with global technology trends, Korea government established ICT wave strategy in 2013 to advance Korea ICT industry and proposed 5 core fields (contents, platform, network, device, security) and 10 main technologies including IoT platform, intelligent software, context aware device and so on [3,4]. Among the technologies, we can classify IoT platforms like Table 1, and this paper is related to common and application service platform.

Whatever it is called as ubiquitous platform or IoT platform, any platforms which provide valuable services to human through automatic and intelligent connection of machine to machine and machine to human can be, so called, smart service platform. Y. Yoon

FIGURE 1. Technology hyper cycle (Gartner, 2014)

Category	Functions	Major platforms
Device	\cdot Open H/W platform, device OS	\cdot Arduino, Rasberry Pi, Beagle
platform	and service platform	Board, ioBridge iota, ARM mbed
Common	\cdot Connection, control, management	\cdot ThingsSquare, Thingsworx,
platform	among heterogeneous devices	Xively, ioBridge
Application	\cdot Data processing and 3rd party	\cdot Axeda, Digi Device Cloud
platform	integration for application service	and so on
Intelligent	\cdot Big data processing, data mining	· SENSEI project, IOT-A project
platform	and semantics	and so on
Platform	• Platform standard for requirement,	\cdot one M2M project, OIC
standard	architecture, protocol and so on	(Open Interconnect Consortium)

TABLE 1. IoT platform classification [5,6]

et al. defined the role of smart platform as a base infrastructure enabling real time processing, intelligence, convergence and two way communication services. The role requires various platforms like knowledge processing, contents processing, service and context platform, and various functions like smart pulling (collecting context information including user behaviors in real time), intelligent inferencing based on the information, producing customized services based on the inference and smartly pushing the service to users [7].

To tackle the problem, we considered characteristics of digital space and implemented management platform called UbiTools. Using the platform, we could construct smart coordination systems to cope with the characteristics of various digital spaces. Digital space requiring smart service can be made up of not only space architecture but also available information and marketing program. Therefore, to effectively realize smart service in digital space, smart coordination among space, information and program should be designed, implemented and managed [8].

The remainder of this paper is organized as follows. Section 2 presents smart service design procedure and core solutions, and Section 3 describes various application cases of the proposed system. Finally, Section 4 offers conclusions.

2. Smart Service Coordination.

2.1. Service design procedure and framework. To realize smart service in digital space, first of all, we should consider available services and choose promising services among them. Such smart service consulting involves analyzing service space, space user and space value, and designing smart services to guarantee to maximize user conveniences, profit of shop manager, and value of the space site. Smart service consulting follows the steps consisting of analysis, planning and feasibility study [8].

- Analysis: environmental analysis of application site, value analysis to gain from the service, space analysis to supply service, user analysis to utilize the service and collection of basic information to derive smart services specific to the space.
- Planning: based on the analysis information, deriving smart service group applicable to the space and setting applicability priority to each service. The priority is determined according to SSD/SVD (Service-Space Deployment/Service-Value Deployment) developed by Ubidus corporation. After setting up priorities, design standard platform based smart service scenario, hardware, software and contents for each service.
- Feasibility study: after smart service design, performing technological feasibility evaluation for each service and economical analysis for service operation. Through this study, we can estimate how the smart services contribute to the operation of the space.

Also, we devised smart service delivery framework like Figure 3. Smart service delivery framework consists of management for service information administration, platform for service information delivery, and interface for connecting among smart service media.

 Management: supplying API (Application Programming Interface) and SDK (Standard Development Kit) to extend services by the integration of 3rd party vendors. UbiTools manager is for controlling UbiTools platform, UbiTools Show module is for administrator and Big data manager is for real-timely processing large data being collected.

FIGURE 3. Smart service delivery framework

- Platform: core technology for implementing smart service. Receive smart service data, process rule based event and deliver accurate information.
- Interface: supplying multi information channel for users. HereRing is for smart phone application reading sensor and code, UbiPresenter is for cloud service based presentation technology, and UbiTools Talk is for communication between space and personal smart media.

2.2. UbiTools Core. UbiTools Core is an integration platform to support system management and operation in digital space as a core technology for implementing smart service. UbiTools Core monitors status information of various equipments (PC, projector, media and so on) and supports for administrator to retrieve such information. Administrator remotely controls the power of media, inquires media status information through remote control function, and upon service trouble sends the error information using PC, SMS, email. UbiTools core supports that a few persons can stably manage digital space through the function of media management, remote administration and deployment of contents and software, contents scheduling and so on [9].

Main function of UbiTools Core is explained in Figure 4 and function architecture is illustrated in Figure 5.

FIGURE 4. UbiTools Core functions

FIGURE 5. UbiTools Core function architecture

3. Application Cases. We have a lot of application cases using UbiTools platform and Table 2 shows some major cases implemented recent years.

Sites	Needs	Solutions
DDP guide	\cdot Need for a little human	\cdot Providing real-time control system
sign media	resources to operate,	using mobile and implementing service
operation	manage and monitor 8 kinds	operation system to install new
system	of 90 medias in the space	program and contents into every media
(2014)		
Korea	\cdot Need for customized view-	• Implementing integrated mobile
History	ing guide considering visitors'	application to provide customized
Museum	characteristics including age,	voice guide according to visitors'
(2013)	nationality	category
SK T.um	\cdot Need for virtual experience	• Implementing working together
(2009-2013)	environment of SKT's new	experience environment with the
	present technologies and new	connection of various experimental
	IT service in the near future to	digital media and smart phone
	deliver the company's vision	\cdot Upgrading individual experience
		media 4 times since 2009
i-Mirror	• Need for customer's fitting	• Providing i-Mirror to take photo of
(2014)	data in each shop	customer's fitting and compare with
	\cdot Need for distinguishing	previous fitting pictures
	promotion goods, inventory	• Providing instant upload function of
	goods and outlet goods	fitting photo into Weibo and utilizing
		function of the data for decision making
		in head office
Yeosu	\cdot Need for mobile-specific func-	\cdot Developing mobile application to
EXPO	tions for visitors to enjoy easy	enjoy EXPO including U-Passport
(2012)	IT services	and my community, and to reserve
		exhibition room

TABLE 2. Major application cases using UbiTools [8]

For example, DDP business in 2014 implemented remote media monitoring system shown in Table 3.

1^{st} level menu	2 nd level menu
\cdot Monitoring	\cdot Computer/projector/rack/visual monitoring
\cdot Service Rule	\cdot Rule manager
\cdot Application	\cdot Application deployment, deployment status, event/action
Management	information and so on
· Contents	\cdot Contents management, template management, contents
Management	schedule, category and so on
\cdot Scheduling	\cdot Power control schedule, today schedule, rule execution schedule

TABLE 3. DDP guide sign media system [10]

4. Conclusions. Smart service platform requires various functions like smart pulling (collecting context information including user behaviors in real time), intelligent inferencing based on the information, producing customized services based on the inference and smartly pushing the service to users [7]. To tackle the problem, we presented a smart

design procedure, framework and solutions to cope with the problem. Our procedure considers the characteristics of digital space consisting of space, information and program. We developed operation platform called UbiTools and using the platform, successfully constructed smart coordination systems in various digital spaces.

REFERENCES

- T. Fu, Y. Wang, H. Shi and H. Fu, Extending intelligent space with ubiquitous computing technology: The rich servants service model, *IEEE International Conference on Networking, Sensing and Control*, pp.1846-1849, 2008.
- [2] C. Kim and M. Kang, Standard and trend analysis of IoT/OneM2M, Journal of Korea Internet Information Institute, vol.15, no.2, pp.31-36, 2014.
- [3] S. Oh, ICT R&D medium and long term strategy, TTA Journal, vol.150, pp.14-19, 2013.
- [4] Telecommunications Technology Association, ICT Standardization Strategy Map, 2015.
- [5] I. Woo, Smart home platform integrating IoT with infrared signal, Journal of Korea Communications Institute, vol.32, no.4, pp.57-62, 2015.
- [6] J. Kim, Emerging IoT ages: Trends and expectations, Telco Research Institute, 2015.
- [7] Y. Yoon, E. Kim and L. Yeom, Smart platform strategies for smart Korea, Journal of Korea Computer Information Institute, vol.16, no.12, pp.235-246, 2011.
- [8] UBIDUS, Corporate Profile, 2015.
- [9] UBIDUS, UbiTools Function Definition and Applications, 2011.
- [10] UBIDUS, DDP Guiding Sign and Media Operation System Manual, 2004.