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Abstract. In this paper, we propose a new multiscale saliency detection algorithm based
on 2D principal component analysis. To measure saliency of pixels in a given image, we
first segment the image into patches by a fixed scale and then use the principal component
analysis to reduce the dimensions which throw out dimensions that are noises with respect
to the saliency calculation. The contrast between a patch and other patches is computed
based on the absolute contrast, bin contrast and the local contrast. Finally, we implement
our algorithm through multiple scales that further decrease the saliency of background.
Experimental results show that our method performs well in the benchmark dataset.
Keywords: Saliency detection, Multiscale, 2D principle component analysis, Patch
contrast

1. Introduction. Visual attention analysis has generally progressed on two fronts: bott-
om-up and top-down approaches. Bottom-up approach, which is data-driven and task-
independent, is a perception processing for automatic salient region selection for images.
There exist several computational models [1-8] for simulating human visual attention
based on the bottom-up approaches.

In this paper, we also focus on the bottom-up approaches. In our proposed model, we
first divide the input image into small image patches. In essence, our proposed algorithm
first divides images into small image patches. Then it uses 2D principal component
analysis (2DPCA [9]) to reduce the dimensionality of each patch. We exploit the absolute
contrast, bin contrast and the local contrast by considering the differences between this
patch and all other patches in the image. Furthermore, for a salient object, the part near
the center of the input image is more salient than that far away from the center. To
diminish this effect, we exploit the multiple scales instead of the central bias to decrease
the saliency of background patches and improve the contrast between salient and non-
salient regions.

The rest of this paper is organized as follows. In Section 2, we present the proposed
saliency detection model based on 2DPCA. The experimental results are shown in Section
3. We end this paper by the conclusions in Section 4.

2. Proposed Saliency Algorithm. In this section, we will state the framework of our
saliency detection method in detail. The steps of our algorithm are fourfold: represent-
ing the image patches, using 2DPCA to reduce dimensionality, computing each patch’s
saliency value and implementing our method to multiple scales. We will describe the
details step by step in the following subsections.
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2.1. Image patches representation. The first step of our algorithm is to divide each
original input image into small image patches to gather local information. For simplicity,
we take image patches from the original images without overlapping. Given an image
A with dimension H × W , non-overlapping patches with the size of n × n pixels are
drawn from it. Generally speaking, the size of the patches located in the bottom and
right boundary is smaller than the regular size. To make sure all patches have the same
dimensions for feature extraction by PCA, we throw out the border regions for simplicity
which do not have regular size. The total number of patches is N = ⌊H/n⌋ · ⌊W/n⌋.
Denote the patch as Ai, i = 1, 2, . . . , N . Then each patch is represented as a column
vector xi of pixel values. The length of the vector is 3n2 since the color space has three
components. Finally, we get a sample matrix X = [x1, x2, . . . , xN ], where N is the total
number of patches as stated above.

2.2. 2DPCA feature extraction. Since saliency detection can be regarded as classi-
fication process of the image blocks, the classification result is salient patch and non-
salient patch. While PCA method is mainly used for dimensionality reduction of high-
dimensional data, and then in the low-dimensional subspace after projection, we get maxi-
mum between-class variance and minimum within-class variance. So we use PCA to select
the appropriate subspace, and the within-class variance of the image blocks in the salient
region and non-salient region is respectively smaller while the between-class distance is
longer between the image blocks in the salient region and those in the non-salient region.
Thus, we choose 2DPCA to compute significantly useful features and remove unwanted
features, and then the contrast and distribution values of each patch are calculated in a
low-dimensional subspace. The average of all N patches for image A is

A =
1

N

N∑
k=1

Ak (1)

Total scatter matrix of image patches for row direction is:

G =
1

N

N∑
k=1

(
Ak − A

)T (
Ak − A

)
(2)

After solving the eigenvalue and eigenvector of G, on the basis of the contribution of

principal component θ =
∑d

i=1 λi

/∑n
i=1 λi ≥ 0.9, we select the eigenvectors X1, X2, X3,

. . . , Xd corresponding to the first d biggest eigenvalues λ1, λ2, λ3, . . . , λd to construct
the optimal projection matrix Xopt, where Xopt = [X1, X2, X3, . . . , Xd].

Total scatter matrix of image patches for column direction is:

G =
1

N

N∑
k=1

(
Ak − A

) (
Ak − A

)T
(3)

We get the optimal projection matrix Yopt = [Y1, Y2, Y3, . . . , Yq] from the eigenvectors
Y1, Y2, Y3, . . . , Yq corresponding to the first q biggest eigenvalues γ1, Ai, γ3, . . . , γq.

We directly project the image matrix Ai (m×n) onto both Xopt (n×d) and Yopt (m×q)
to obtain the recognition matrix Zi (q × d):

Zi = Y T
optAiXopt (4)

2.3. Patch contrast model. Rareness reflects the property of distinctiveness that few
pixels must be visually unique to inspire human visual concentration. It can be easily
discovered from global and local contrasts. Absolute contrast and bin contrast are to
cooperate in the proposed global contrast.



ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.7, NO.2, 2016 377

Absolute contrast preserves the color distinctiveness by measuring the L2-norm distance
between the given patch Ai and the averaged patch from the image. The averaged patch
is defined as mean(A) = 1

N

∑N
i=1 Zi. Thus, absolute contrast is defined as:

AC(Ai) = ∥Zi − mean(A)∥ (5)

In order to emphasize the uniqueness of the rare-color bins, their saliency should be
larger than the saliency from common-color bins. Thus, we evaluate a bin’s frequency to
reflect its saliency. In detail, we separate the N patches into B clusters, K1, K2, . . . , KB,
via Normalized Cut [10], and |Ka| indicates its population where 1 ≤ a ≤ B. The bin
contrast for a patch Ai is defined as:

BC(Ai) = exp

(
|Ka|∑B
b=1 |Kb|

)
(6)

These two contrasts can preserve global saliency well, but they still cannot empha-
size local contrasts owing to misunderstanding spatial property. Local contrast is thus
considered further in the following.

The image block in the image itself does not determine its saliency, and its saliency
is determined by the difference between its feature and those of the image blocks in the
adjacent area. The more obvious the difference is, the more likely it is that it can cause
human vision attention, and the contrast will be more distinct if the distance between the
patch and the neighborhood is smaller. So we define the contrast model for the patch i
in an image as a weighted sum of feature differences from other patches:

LC(Ai) =
N∑

j=1

w(xi, xj) · d(Zi, Zj) (7)

where d(Zi, Zj) = ∥Zi − Zj∥2 is the distance between the feature Zi of patch i and Zj of

patch j, the Gaussian spatial weight is defined as w(xi, xj) = (1/Zx) exp
((
−∥xi − xj∥2) /

σ2
x), and Zx is the normalization factor. xi and xj are respectively the central positions

of patch i and patch j.
The contrasts from local and global visual clues are integrated. We multiply AC, BC,

and LC together for fusing them:

MC(Ai) = AC(Ai) × BC(Ai) × LC(Ai) (8)

2.4. Multiple scales extension. Based on the observation that patches in background
are likely to have similar patches at multiple scales, which is in contrast to more salient
patches that could have similar patches at a few scales but not at all of them (salient
object always smaller than the background), therefore, we wish to incorporate multiple
scales to further decrease the saliency of background patches, improving the contrast
between salient and non-salient regions.

For a patch pi of scale r, the saliency value according to Equation (8) is defined as:

Sr
i = 1 − exp

{
− 1

L

L∑
k=1

MC(Ak
i )

}
(9)

Considering the scales Rc = {r1, r2, . . . , rM}, we use Equation (9) to calculate the
saliency of patch i as {Sr1

i , Sr2
i , . . . , SrM

i }. The final saliency is computed as:

Si =
1

M

∑
r∈Rc

Sr
i (10)

3. Experiments. We evaluate our method in two aspects: predicting human visual fix-
ations and segmenting the salient object from natural images.
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(d) (e)

Figure 1. The original images and its different saliency maps with dif-
ferent patch sizes: (a) original images, (b) saliency maps with the image
patch size being 30× 30; (c) saliency maps with the image patch size being
20×20; (d) saliency maps with the image patch size being 10×10; (e) final
saliency maps which combines three results together

3.1. Predicting human visual fixations. In this subsection, we show several experi-
mental results on detecting saliency in natural images. We used the image dataset and its
fixation data collected by Bruce and Tsotsos [11] as a benchmark for comparison. This
dataset contains eye fixation records from 20 subjects for a total of 120 images of size
681 × 511. We also computed the area receiver operating characteristic (ROC) curve
[11], i.e., the area under the curve to quantitatively evaluate the algorithm performance.
The final ROC area shown in Table 1 is the average value over 100 permutations. The
mean and standard errors are also reported in Table 1. It is observed that our model
outperforms all other methods in terms of ROC area.

Table 1. Performance in predicting human visual fixation data. SE means
standard errors.

Attention Model ROC (SE)
Itti et al. [1] 0.6146 (0.0008)

Bruce and Tsotsos [2] 0.6727 (0.0008)
SUN [3] 0.6682 (0.0008)

GBVS [4] 0.6818 (0.0007)
Duan et al. [5] 0.6837 (0.0008)
Our method 0.7042 (0.0007)

Some visual results of our algorithm are compared with the state-of-art methods in
Figure 2. The comparison results show that the most salient locations on our saliency
maps are more consistent with the human fixation density maps.

3.2. Salient object segmentation. We have evaluated the results of our approach on
the publicly available database provided by Achanta et al. [6]. In order to comprehensively
evaluate the accuracy of our method for salient object segmentation, we use the iterative
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(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 2. Results on predicting human visual fixation data: (a) input
images; (b) human fixations; (c) saliency map from the proposed model;
(d) saliency map from Itti’s model [1]; (e) saliency map from Bruce’s model
[2]; (f) saliency map from Zhang’s model [3]; (g) saliency map from Harel’s
model [4]; (h) saliency map from Duan’s model [5]; (i) saliency map from
Achanta’s model [6]

(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 3. Results for a qualitative comparison between our method and
the other six approaches: (a) original images; (b) ground truth; (c) saliency
map of Itti’s model [1]; (d) saliency map of Hou’s model [8]; (e) saliency map
of Ma’s model [12]; (f) saliency map of Achanta’s model [6]; (g) saliency
map of Cheng’s model [7]; (h) saliency map of Duan’s model [5]; (i) saliency
map of the proposed model

GrabCut [7] to obtain a binary mask for a given saliency map. Final saliency cut result
is generated by this way as our binary mask to obtain the quantitative evaluation (see
Figure 3).

4. Conclusions. We present a multiscale saliency detection algorithm based on 2DPCA
to detect the saliency object in the color image. Our saliency algorithm is based on three
elements: the absolute contrast, the bin contrast and the local contrast. We evaluate our
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method on two publicly available data sets and compare our scheme with other models.
The resulting saliency maps have a little improvement on the database with center bias
mechanism. However, it is better suitable to salient object segmentation by preserving
more fine details. In the future work, we will proceed to extend the proposed model and
its corresponding algorithms to the video saliency detection.
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