
ICIC Express Letters
Part B: Applications ICIC International c⃝2016 ISSN 2185-2766
Volume 7, Number 2, February 2016 pp. 363–368

A PARALLEL LOOP SCHEDULING SCHEME ON FIELD
PROGRAMMABLE GATE ARRAYS

Zhijian Lu

Postdoctoral Scientific Research Workstation
Shanghai Futures Exchange

No. 500, Pudian Road, Shanghai 200122, P. R. China
lu.zhijian@shfe.com.cn

Received August 2015; accepted November 2015

Abstract. The designers in reconfigurable computing fields always require considerable
knowledge in both software and hardware to build hybrid applications. The main chal-
lenges and barriers that hamper the wide adoption of reconfigurable computing systems
are the lack of high-level design and development tools. This paper presents a compila-
tion framework for IR2HDL mapping for Field Programmable Gate Arrays. The modulo
scheduling schemes with a constant initiation interval in most compilers schedule the
iterations and generate pipelines by using a pipeline division method. In order to reduce
the pipeline depth and increase throughput, a parallel loop scheduling scheme and im-
proved modulo scheduling method are presented. The test case on selected kernels shows
the method improves the delay stage and the scheme shows significant performance im-
provement.
Keywords: Reconfigurable compiling, Loop scheduling, IR2HDL

1. Introduction. Reconfigurable systems have shown the great importance in both com-
putation-extensive and data-extensive applications, which combine the sequential and
the spatial computing models. The applications should be partitioned to software and
hardware parts. The software programs run in the general purpose processors such as
CPUs. The hardware partitions are translated into hardware description language, such
as Verilog and VHDL, and then synthesized to bit streams by vendor-specific tool chain,
such as Quartus II by Altera. The translation process of high-level languages to HDLs is
not trivial and extensive design knowledge of digital circuit and platform-specific hardware
specifications are needed. Time is also an important factor. However, developers with
software background are using high-level synthesis tools to generate HDL code [1-3]. For
general purpose, automatic compilation is the key to the success of wide adoption of
reconfigurable computing systems.

Handel-C [4] is a subset of C and a high-level programming language which targets
reconfigurable hardware. It is mainly oriented towards the hardware developers and can
be compiled to HDL before synthesizing to the corresponding hardware. All hardware
details are exposed to developers by extending C syntax. SA-C [5] and Streams-C [6] are
also subset of C programming language, which are designed to be directly and intuitively
translated into hardware, including FPGAs. Hardware details are hidden for software de-
signers by using C variations. This means the existing applications need to be rewritten.
Many C-like languages have been proposed, such as SPARK [7], ROCCC [8,9], SPC [10],
DEFACTO [11], Garp [12], Nimble [13], CHIMPS [14], which consider C subset as in-
put languages and compiled C subset into HDL and will eventually be synthesized using
commercial synthesis tools. Many high-level synthesis techniques have been proposed.
However, none of them seems to have the potential to replace the hardware description

363



364 Z. LU

languages like Verilog and VHDL. These techniques focused on specific reconfigurable ar-
chitectures emphasizing parallelizing schemes and memory optimizations. Loop pipeline
can provide efficient schedules by overlapping the operations of different iterations sequen-
tially, and thus can fit effectively on reconfigurable architectures. Modulo scheduling as a
loop pipelining technique can generate operation arrangements in loops, and there are no
data dependence violations or resource conflicts. Modulo scheduling methods [8,10,12,13]
with constant initiation interval are used to generate loop pipelining architectures on
reconfigurable hardware. However, these methods lead to more clock cycles and lower
pipelining throughput. The ASAP scheduling and directed pipelining division method
are used to insert nodes in the loop data dependence graph to these pipelines. Although
the directed pipelining division method puts nodes with the same height in the loop data
dependence graph into the same pipelining stage, more inter-stage registers and more re-
sources are needed [10,12,13]. This paper presents a parallel loop scheduling scheme and
improved modulo scheduling method. The test case on selected kernels shows the method
improves the delay stage and the scheme shows significant performance improvement.

The rest of the paper is organized as follows. Section 2 presents an overview of the
compilation framework. Section 3 shows the architecture of parallel loop pipeline. An
improved pipelining division method and modulo scheduling with the variable initiation
interval are also presented to improve the performance. Section 4 presents the result of
test cases. Section 5 concludes the paper.

2. Compilation Framework. The framework uses LLVM front-end to convert C code
to Intermediate Representations (IR) with standard data and control optimizations and
could extract computation-extensive loops of C programs and compiles its subset into HDL
running on a reconfigurable hardware. The selected kernel can be mapped by IR2HDL
module, which can map the selected kernel to reconfigurable function units. The output
files of the framework consist of C program, HDL and the interface files of software and
hardware. The target architecture consists of a general-purpose processor and FPGA,
which can raise the performance of the target applications. As shown in Figure 1, the
process of each module in the framework is as follows.

Software/Hardware Partitioning uses the feedback profiling with computation and mem-
ory templates, which can be adapted to the applications. This module can select the
kernels that make trade-offs between performance and resource allocations in IR for re-
configurable hardware. Preprocessing module transforms the selected kernels composed of
a serial of basic blocks to function and is responsible for generating the software/hardware

Figure 1. Compilation framework



ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.7, NO.2, 2016 365

interface file and the communication functions. IR2C Dec module transforms the modi-
fied IR to C program. LLVM IR is a static single assignment language. Its optimizations
are for software and do not consider reconfigurable hardware features. It is necessary
to apply dedicated optimizations to LLVM IR in order to fit in reconfigurable hard-
ware. Operation parallelization, memory access optimization, basic block partitioning,
bit-width analysis are the Hardware Opt module options. IR2HDL module can transform
the IR functions into HDL. According to the target program characteristics, the IR2HDL
module transforms the program as hardware partition into HDL with loop pipelining.
Software/Hardware Interface Gen module generates the interface code in H/S interface
information file.

3. Parallel Pipelining Architecture. Parallel pipelining architecture schedules in-
structions derived from different iterations of loop in parallel for hardware acceleration.
Loop pipelining architecture can be suitable candidate for mapping on reconfigurable
systems.

3.1. Parallel pipelining framework. Figure 2 shows the parallel pipelining framework
generated for loop pipelining architectures.

Figure 2. The framework of loop pipelining

The Loop Ctrl Unit controls the start, stepping, wait and termination of the loop
pipeline. Because of the data dependence, a two-dimensional vector algorithm is used to
deal with the iteration postponement. ALU is in charge of executing arithmetic operations
under control of the Control Unit which is responsible for the pipeline schedule according
to the Loop Data Dependence Graph (LDDG) after H/S partitioning. A process statement
is used to describe the parallel behavior of ALU, and the communication between different
processes. Each pipeline stage corresponds to a process of HDL design. Mem Interaction
Unit is used to generate address and enable signals. By using the self-loop pipelining
technique, a distributed control is used to generate indexes of arrays independently in the
Address Ctrl module.

3.2. The division of pipelining. Pipelining division means adding registers to the
proper place of the data path. Registers for output signals will be updated by the system
after the completion of each stage operation. In order to generate loop pipelining architec-
ture, division is the first step. Reconfigurable compilers use the ASAP pipelining schedule
algorithm and directed division of pipelining method to put nodes into the same stage.
However, it needs to insert more registers between stages and demands more resources.
The time delay of each pipeline stage is different in the loop pipelining. The frequency of
the design on FPGA depends on the circuit delay.

Figure 3 shows the results of pipeline stages using directed pipelining division method
that puts nodes that have the same height in the LDDG into the same pipelining stage.
The nodes represent operations and edges represent data dependence. Iteration of the loop
body can be executed in pipeline. The logic delays of pipeline stages s1-s3 are shorter



366 Z. LU

Figure 3. The loop LDDG and results

than stage s4. If s1-s3 stages are combined into one stage, the maximum frequency
of hardware is the same, which can reduce the depth of the pipeline and the number
of registers and increase the throughput of pipelining. Therefore, the improved method
merges the shorter logic delay of pipeline stages without changing the maximum frequency.
The combinational logic delay of the pipeline stages is estimated.

3.3. Modulo scheduling. Module scheduling methods are used by many reconfigurable
compilers to generate loop pipelining architecture on FPGAs. Instructions from successive
loop iterations are initiated at a constant interval, which defines the number of cycles
between the beginning of two consecutive iterations. To determine the minimum Initiation
Interval (II), the resource and data dependency constraints should be taken into account
carefully. The resource constraints are determined by total resource requirements of the
operations in the loop. Reconfigurable hardware like FPGAs has abundant resources
in Configurable Logic Blocks, a large amount of LUT as on-chip memory, and other
special-purpose resources, such as MAC. Data dependency constraint is also a critical
factor in FPGAs. Minimum initiation interval preserves the data dependence and is
the max number of cycles between the start time of the two successive iterations. The
constant initiation interval is usually used in compilers when generating loop pipelining
architecture.

Figure 4. The combined pipeline stages



ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.7, NO.2, 2016 367

To characterize the dependences, an edge is presented with (ϕ, τ) pair. ϕ indicates the
number of iterations that the dependence spans, and τ indicates the elapsed time between
the time when the first and the second operation is issued. For cyclic dependence, a
cycle λ contains a series of edges; we use ϕλ to present the sum of ϕ and τλ to present
the sum of τ on λ. As shown in Figure 4, by the formula II = max(∀λ) ⌈τλ/ϕλ⌉, II =
max (⌈4/2⌉ , ⌈1/2⌉ , ⌈5/2⌉ , ⌈5/4⌉) = 3. However, the loop iteration is also scheduled by the
variable II(1, 4). In Figure 4, by the previous formula, II = max (⌈3/4⌉ , ⌈3/2⌉ , ⌈1/2⌉) =
2. However, this loop iteration is also scheduled by the variable II(1, 2). The modulo
scheduling with constant II reduces the pipelining throughput.

4. Test Case. In this paper, test cases are used for experiment. The C program and
software interface file are compiled to executable files. HDL and hardware interface files
are synthesized into bit-stream file by ISE. The improved pipelining division method
reduces the pipeline depth and the number of registers and does not reduce the maximum
frequency.

In Table 1, DR means the directed pipelining division method and IM means the
improved pipelining division method. There is not loop-carried dependency in test case
2. Because the other test cases have loop-carried dependency, they scheduled by the
module scheduling with variable II are better than scheduled by the module scheduling
with constant II. The module scheduling with variable II reduces the initiation interval.
The number of loop iterations is 64 in the first three test cases. The loop execution cycles
are shown by the scheme, which uses the improved pipelining division method and module
scheduling with variable II to generate the loop pipelining architecture. The test case 4
is nested loop. The number of the inner loop iterations and outer loop iterations is 64.

Table 1. Different pipelining division II

Test case
Test 1 Test 2 Test 3 Test 4

DR IM DR IM DR IM DR IM

CII 1 1 3 3 3 2 2 2

VII 1 1 3 (1, 4) (1, 4) (1, 2) (1, 2) (1, 2)

The loop pipelining has three components: a prolog, a steady state, and an epilog.
In the steady state, a result is available every II cycle. The prolog and epilog are the
instruction schedules that respectively set up and drain the execution of the loop kernel.
Because both constant II and variable II are 1 in test case 1, the performance is improved
only by the prolog component. Because the other cases have loop-carried, the performance
is significantly improved.

5. Conclusions. In this paper, a parallel loop scheduling scheme for FPGA-based com-
puting is presented, which applies compilation technology not only to accelerating soft-
ware, but also to improving the hardware implementation. IR2HDL module is used to
map selected kernels to the reconfigurable units, which can efficiently map SSA based IR
to HDL. When generating loop pipelining architecture, previous compilation technologies
use module scheduling with constant initiation interval and directed pipelining division
method. In order to increase throughput, the improved pipelining division scheme and
module scheduling with variable II are presented. In particular loop with loop-carried
dependence, the scheme shows significant performance improvement. In the future, more
high level languages will be added in the scheme such as Java.



368 Z. LU

REFERENCES

[1] A. Banaiyan, H. Esmaeilzadeh and S. Safari, Co-evolutionary scheduling and mapping for high-level
synthesis, Proc. of the IEEE International Conference on the Engineering of Intelligent Systems,
pp.1-5, 2006.

[2] A. Canis, J. Choi, M. Aldham et al., LegUp: An open-source high-level synthesis tool for FPGA-based
processor/accelerator systems, ACM Trans. Embedded Computing Systems, pp.27-28, 2013.

[3] J. Curreri, G. Stitt and A. D. George, High-level synthesis of in-circuit assertions for verification,
debugging, and timing analysis, International Journal of Reconfigurable Computing, 2011.

[4] L. Celoxica, Handel-C Language Reference Manual for DK2.0, Celoxica Ltd, pp.206-207, 2003.
[5] W. A. Najjar, W. Böhm, B. A. Draper et al., High-level language abstraction for reconfigurable

computing, Computer, pp.63-69, 2003.
[6] J. Frigo, M. Gokhale and D. Lavenier, Evaluation of the streams-C C-to-FPGA compiler: An ap-

plications perspective, Proc. of the ACM/SIGDA International Symposium on Field Programmable
Gate Arrays, pp.134-140, 2001.

[7] S. Gupta, N. Dutt, R. Gupta et al., SPARK: A high-level synthesis framework for applying paral-
lelizing compiler transformations, Proc. of the International Conference on VLSI Design, 2003.

[8] Z. Guo and W. Najjar, A compiler intermediate representation for reconfigurable fabrics, Proc. of
the International Conference on Field Programmable Logic and Applications, 2006.

[9] B. Buyukkurt, J. Cortes, J. Villarreal et al., Impact of high-level transformations within the ROCCC
framework, ACM Trans. Architecture & Code Optimization, pp.110-143, 2010.

[10] M. Weinhardt and W. Luk, Pipeline vectorization, IEEE Trans. Computer-Aided Design of Integrated
Circuits and Systems, pp.234-248, 2006.

[11] K. Bondalapati, P. C. Diniz, P. Duncan et al., DEFACTO: A design environment for adaptive com-
puting technology, Proc. of the 11th IPPS/SPDP’99 Workshops Held in Conjunction with the 13th
International Parallel Processing Symposium and the 10th Symposium on Parallel and Distributed
Processing, 1999.

[12] T. J. Callahan, Automatic Compilation of C for Hybrid Reconfigurable Architectures, University of
California Berkeley, 2002.

[13] Y. Li, T. Callahan, E. Darnell et al., Hardware-software co-design of embedded reconfigurable ar-
chitectures, Proc. of the 37th Annual Design Automation Conference, 2000.

[14] A. R. Putnam, D. Bennett, E. Dellinger et al., CHiMPS: A high-level compilation flow for hybrid
CPU-FPGA architectures, FPGA, 2008.


