
ICIC Express Letters
Part B: Applications ICIC International c⃝2016 ISSN 2185-2766
Volume 7, Number 2, February 2016 pp. 357–362

A CLASS OF TIME-DELAY DISTURBANCE DISCRETE SYSTEM
FOR ITERATIVE LEARNING CONTROL

Yinjun Zhang1,2,∗, Yinghui Li1 and Jianhuan Su2

1Aeronautics and Astronautics Engineering Institute
Air Force Engineering University

No. 1, East Changle Road, Xi’an 710038, P. R. China
∗Corresponding author: txeb@163.com

2School of Physics and Electrical Engineering
Hechi University

No. 42, Longjiang Road, Yizhou 546300, P. R. China

Received August 2015; accepted November 2015

Abstract. The work is connected with the development of stability theory methods for
a class of linear discrete time-delay system for iterative learning control with multi-
state multi-input and measurement noise. This research works out the specific control
law for the system, and proves its robustness and convergence via 2-dimensional linear
inequalities and mathematical induction. It allows us to obtain new interesting results
both for theory and for applications, and also for knowledge theory as a whole. The new
algorithm can also bring a new idea to apply the adaptive algorithm.
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1. Introduction. During the last two decades, the study on stability analysis for time-
delay systems has been widely investigated. Time delay occurs in various physical, in-
dustrial and engineering systems such as biological systems, neural networks, networked
control systems, and multi-agent systems. It is well known that the existence of time de-
lay is a source of poor performance and instability of dynamic systems. For more details,
see [7,8,11,13,14] and references therein.

On the other hand, these days, most systems use digital computers. Therefore, discrete-
time modeling with time delay plays an important role in many fields of science and
engineering applications. In this regard, various approaches to stability and stabilization
for discrete-time systems with time delay have been investigated in the literature, and
parameter identification of continuous-time systems using iterative learning control is
presented [3-5,9,10,12].

Iterative learning control (ILC) is an approach for improving the transient performance
of systems that operate repetitively over a fixed time interval [1,2]. Owing to its simplicity
and effectiveness, ILC has been found to be a good alternative in many areas and applica-
tions (see, for instance, [6] and the references therein). Iterative learning control was first
proposed by Arimoto et al. in 1984 in Reference [1]. Since then, ILC has become a very
important issue of control field. A lot of achievements have been published as References
[2-4]. Many of the systems discussed before are described by ordinary differential equa-
tions. However, there are so many systems that can be modeled by partial differential
equations but relevant papers are rarely seen. On the other hand, discrete system cannot
be approached by ordinary differential equations. So ILC of discrete system is a very
important research field.

The paper studied a class of time-delay time-varying discrete system for iterative learn-
ing control. Sufficient conditions are given for the convergence of system by employing
special norm. Numerical simulation is presented for a discrete system solved using ILC
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based on Eular difference format. The numerical example is provided to illustrate the
effectiveness of the proposed method.

2. Problem Formulation. Consider a class of time-delay time-varying discrete system
as follows:

x(t + 1, k) = A(t)x(t, k) + A1(t)x(t − τ, k) + B(t)u(t, k) + W (t, k) (1a)

y(t, k) = C(t)x(t, k) + V (t, k) (1b)

where τ is the state time-delay, which satisfies 0 ≤ τ ≤ t0; x(t, k), x(t + 1, k) ∈ Rn

are the state vector; A(t), B(t), C(t) are the unknown matrices representing parametric
uncertainties in the state matrices; W (t, k) ∈ Rn, V (t, k) ∈ Rr are the state disturbance
and measurement noise; yd(t) ∈ Rr is expected output trajectory; u(t, k) ∈ Rm is input
vector of the system. For system (1), P-type learning law is being applied.

u(t, k + 1) = u(t, k) + P (t + 1)e(t + 1, k) (2)

where e(t, k) is output error and e(t, k) = yd(t) − y(t, k).
For the time-delay varying discrete system (1), the following assumptions can be made.
(1) When there are not initial value and disturbance, namely x (t0, k) = xd(t0), W (t, k)

= 0, V (t, k) = 0, the expected trajectory can achieve.{
xd(t + 1, k) = A(t)xd(t, k) + A1(t)xd(t − τ, k) + B(t)ud(t, k)
y(t, k) = C(t)xd(t, k)

(3)

where xd(t), yd(t), ud(t) are expected state trajectory, expected output trajectory and
ideal control respectively.

(2) The following conditions should be satisfied ∥x(t0, k)−xd(t0)∥ ≤ bx0, k = 0, 1, 2, · · · ;
∥W (t, k)∥ ≤ bw, k = 0, 1, 2, · · · ; ∥V (t, k)∥ ≤ bv, k = 0, 1, 2, · · · ;

(3) B(t), C(t) are row full rank.
For the error result, we consider two conditions as follows.
(1) When k → ∞, if limk→∞ ∥e(t, k)∥ ≤ δ, δ is a smaller positive integers, then we say

the system has robustness.
(2) When k → ∞, if limk→∞ ∥e(t, k)∥ ≤ 0, then the system is convergent.
Convergence is the most important problem for iterative learning control algorithm.

Theorem 2.1. If system (1) meets these assumptions (1-3), we use the iterative learning
control law (2) in the interval [t0, t0 + T ], if it satisfies the following assumption, then it
is being proved.

(1) ∥I − C(t)B(t − 1)P (t)∥ ≤ ρ < 1, then the output error has boundary. Namely
limk→∞ ∥e(t, k)∥ ≤ δ.

(2) limk→∞ x(t, k) = xd(t), t ≤ t0, limk→∞ W (t, k) = W ∗(t), limk→∞ V (t, k) = V ∗(t),
then when e(t, k) → 0, limk→∞ ∥ek(t, k)∥ = 0 for k → ∞.

3. The Proofs of Robustness and Convergence. Next we will prove Theorem 2.1.
Proof: Let

η(t, k) = x(t − 1, k + 1) − x(t − 1, k) (4)

From Equation (1a), we know

η(t + 1, k) = x(t, k + 1) − x(t, k)

= A(t − 1)η(t, k) + A1(t − 1)η(t − τ, k) + B(t − 1)P (t)ek(t, k)

+W (t − 1, k + 1) − W (t − 1, k) (5)

Hence

e(t, k + 1)

= yd(t) − y(t, k + 1)
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= ek(t, k) + y(t, k) − y(t, k + 1)

= ∥I − C(t)B(t − 1)P (t)∥e(t, k) − C(t)[A1(t − 1)η(t − τ, k) + A(t − 1)η(t, k)]

−C(t)[W (t − 1, k + 1) − W (t − 1, k)] − [V (t, k + 1 − V (t, k)] (6)

For Equation (5) and Equation (6), we use matrices to express. Let

A(t) =



A(t − 1) 0 · · · A1(t − 1) 0 · · · AI−1(t − 1) · · · 0 AI(t − 1)
I 0 · · · 0 0 · · · 0 · · · 0 0
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 0 · · · I 0 · · · 0 · · · 0 0
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 0 · · · 0 0 · · · 0 · · · 0 0
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 0 · · · 0 0 · · · 0 · · · 0 0
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 0 · · · 0 0 · · · 0 · · · I 0


θ(t, k) = [η(t, k) η(t − 1, k) · · · η(t − τ1, k) · · · η(t − τ2, k) · · · η(t − τI−1, k) · · · η(t − τI , k)]T

B(t) = [B(t − 1)P (t) 0 · · · 0 · · · 0 · · · 0 · · · 0]T

C(t) = [−C(t − 1)A(t − 1) 0 · · · − C(t)A1(t − 1) · · · − C(t)A2(t − 1) · · · − C(t)AI−1(t − 1) · · · − C(t)AI(t − 1)]T

∆W (t) = [W (t − 1, k + 1) − W (t − 1, k) 0 · · · 0 · · · 0 · · · 0 · · · 0]T

Equations (5) and (6) can be transformed Equation (7).

θ(t + 1, k) = A(t)θ(t, k) + B(t)e(t, k) + ∆W (t) (7)

e(t, k + 1) = C(t)θ(t, k) + [I − C(t)B(t − 1)P (t)]e(t, k)

−C(t)[W (t − 1, k + 1) − W (t − 1, k)] − [V (t, k + 1) − V (t, k)] (8)

According to Equation (5) and the definition of θ(t, k), we know ∥θ(t0, k)∥ is bounded.
From e(t, 0) = yd(t)− y(t, 0), we know e(t, 0) is bounded. As there exists disturbance and
measurement noise, we use induction method to prove it.

1) When t = t0 + 1, for Equation (8), we have and take the e(t0 + 1, k) norm

∥e(t0 + 1, k)∥ ≤
∥∥∥C(t0 + 1)θ(t0 + 1, k)

∥∥∥
+∥[I − C(t0 + 1)B(t0)P (t0 + 1)]∥∥e(t0 + 1, k)∥
+∥C(t0 + 1)[W (t0, k + 1) − W (t0, k)]∥
+∥V (t0 + 1, k + 1) − V (t0, k)]∥ (9)

Let

d(t0 + 1) = supk

(∥∥∥C(t0 + 1)θ(t0 + 1, k)
∥∥∥ + ∥C(t0 + 1) [W (t0, k + 1) − W (t0, k)]∥

)
+supk∥[V (t0 + 1, k + 1) − V (t0, k)]∥ (10)

As
∥∥∥C(t0 + 1)θ(t0 + 1, k)

∥∥∥ and ∥C(t0 + 1) [W (t0, k + 1) − W (t0, k)]∥ are bounded, d(t0

+1) is bounded.
So inequality (9) can be rewritten

∥e(t0 + 1, k)∥ ≤ ∥e(t0 + 1, 0)∥ +
d(t0 + 1)

1 − ρ
(11)

As supk∥e(t0+1, k)∥ is bounded and because ∥θ(t0+1, k)∥ is bounded, supk∥θ(t0+1, k)∥
is bounded.

2) When t = l, then supk

{
∥θ(l, k)∥
∥e(l, k)∥

}
is bounded.

3) When t = l + 1, set

d(l + 1) = supk

(∥∥∥C(l + 1)θ(l + 1, k)
∥∥∥ + ∥C(l + 1)[W (l, k + 1) − W (l, k)]∥

)
+supk∥[V (l + 1, k + 1) − V (l + 1, k)]∥ (12)
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Similarly

∥e(l + 1, k)∥ ≤ ρk∥e(l + 1, 0)∥ +
k−1∑
j=0

ρk−j−1d(l + 1) ≤ ∥e(l + 1, 0)∥ +
d(l + 1)

1 − ρ
(13)

When t = l + 1, we can get that ∥θ(l + 1, k)∥ is bounded, so supk∥e(l + 1, k + 1)∥ has
bounded. Thus, we prove the robustness of system.

In addition, when limk→∞ W (t, k) = W ∗(t), limk→∞ V (t, k) = V ∗(t), set v1 = C(t)
[W (t − 1, k + 1) − W (t − 1, k)] + [V (t, k + 1) − V (t, k)], taking the limit, we have

lim
k→∞

v1 = lim
k→∞

C(t)[W (t − 1, k + 1) − W (t − 1, k)] + lim
k→∞

[V (t, k + 1) − V (t, k)] = 0 (14)

When limk→∞ x(t, k) = xd(t), t ≤ t0, limk→∞ η(t+1, k) = limk→∞(x(t, k+1)−x(t, k)) =
0.

We take the norm of Equation (6),

∥e(t + 1, k)∥ ≤
∥∥∥C(t)θ(t, k)

∥∥∥ + ∥I − C(t)B(t − 1)P (t)∥∥e(t, k)∥

+∥ − C(t)[W (t − 1, k + 1) − W (t − 1, k)] − [V (t, k + 1) − V (t, k)]∥(15)

Then take the limit of Equation (15)

lim
k→∞

∥e(t + 1, k)∥ ≤ lim
k→∞

∥I − C(t)B(t − 1)P (t)∥∥e(t, k)∥ (16)

Because ∥I−C(t)B(t−1)P (t)∥ < ρ < 1, we have limk→∞ ∥e(t, k)∥ ≤ limk→∞ ρk∥e(t, 0)∥
= 0. Thus, the convergence can be proved.

4. Simulation Analysis. In this section, we will use some examples to illustrate that
the system is robust and convergent. We construct the system as follows:

x(t + 1, k) =

[
−0.5 cos t 0.1 sin t

0.2 −0.4 sin t

]
x(t, k) +

[
−0.01 0.02t

0.5 cos t 0.21

]
x(t − 4, k)

+

[
0.011t
0.53t

]
u(t, k) + W (t, k)

y(t, k) = [0.09 0.0033t]x(t, k) + V (t, k) (17)

The expected trajectory is yd(t) = 0.005t2 + 0.008. The learning gain is K(k) =

0.5(C(t)B(t − 1))T
[
C(t)B(t − 1)(C(t)B(t − 1))T

]−1
, and C(t)B(t − 1) are row full ma-

trices.
Part A: Let the interference and initial value offset be limited stochastic error. The

initial value offset, state interference and output interference satisfy ∥x(t0, k)− xd(t0)∥ ≤
0.02, k = 0, 1, 2, · · · , ∥W (t, k)∥ ≤ 0.02, k = 0, 1, 2, · · · , ∥V (t, k)∥ ≤ 0.06, k = 0, 1, 2, · · ·
respectively. Let the interference be bounded and verify robustness of the system.

Part B: Let the interference and initial value offset be convergent.
The initial value offset, state interference and output interference satisfy limk→∞ x(t0, k)

= x∗(t0), limk→∞ W (t, k) = W ∗(t), limk→∞ V (t, k) = V ∗(t) respectively.
For part A, we assume ∥x(t0, k) − xd(t0)∥ = 0.02(2rand(2, 1) − ones(2, 1)), W (t, k) =

0.2(2rand(2, 1) − ones(2, 1)), V (t, k) = 0.06(2rand(2, 1) − ones(2, 1)).
For system (1), the simulation results are shown in Figures 1 and 2.

For part B, we assume: [xd(0)−x(0, k)]=

[
0.1k

0.1 + 0.5k

]
, ∥W (t, k)∥=

(
0.5k + 1

) [
sin t
sin t

]
,

∥V (t, k)∥ = [(k + 1)−4 + 0.5] cos t. For system (1), the simulation results are shown in
Figures 3 and 4.
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Figure 1. Comparison with
17th, 38th iterative output tra-
jectory and expected output
trajectory

Figure 2. The relationship
between iterative times and
ME

ME (Maximum Error) =

379.0883 216.3278 94.9492 77.0205 38.8554 12.9564
5.1270 2.6077 1.5576 3.3849 2.8157 2.2167
3.1503 2.3755 6.0973 5.8784 5.8200 3.4241
8.6467 2.8612 6.5419 3.0400 1.6388 3.5837
3.2528 1.1944 0.7497 2.0157 2.9416 3.9901
0.6243 1.0232 5.0303 3.5680 1.6472 3.4707
1.0529 0.4023 5.5902 1.2127 2.5782 1.4675
1.5536 1.0690 1.3159 2.4366 1.0192 1.0692
1.3709 2.2331 1.6842 3.2071 7.3576 2.6422
1.5728 1.3386 2.960l 5.2212 9.3661 3.1395

Figure 3. Comparison with
17th, 38th iterative output tra-
jectory and expected output
trajectory

Figure 4. The relationship
between iterative times and
ME

ME =

340.9760 304.5506 160.5417 130.1544 44.0637
30.2087 14.2487 4.3268 2.7438 1.6982
0.4861 0.4177 0.3273 0.1830 0.1634
0.1161 0.0953 0.0951 0.0824 0.0747
0.0747 0.0729 0.0701 0.0693 0.0543

5. Conclusions. This paper presented a class of time-delay discrete system for iterative
learning control algorithm. According to comprehensive analysis and summary, we design
the controller of discrete system. We structure liner inequality based on 2-D theory and
prove the system robustness and convergence.
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According to improvement of the ordinary discrete iterative learning control algorithm,
we propose and prove the improving algorithm with time-delay and disturbance in discrete
system that has monotone convergence in sup norm and expend the traditional Arimoto
algorithm.
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