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Abstract. Rapid developments of multimedia applications have led to the necessity of
stringent quality videos in Wireless Multimedia Sensor Networks (WMSN). However,
inclement weather conditions and illumination variance often lead that WMSN videos
contain many noises, especially, the mixed Gaussian-rain noise. Thus, WMSN video
denoising has been recently studied extensively. In this paper, the mixed Gaussian-rain
noise removal method based on inexact robust principle component analysis (Inexact
RPCA) and morphological component analysis (MCA) in WMSN is proposed. Firstly,
WMSN video is decomposed into three parts: low-rank part, Gaussian noise part, and
sparse part via Inexact RPCA. Secondly, sparse part is decomposed into rain component
and nonrain component by performing dictionary learning and sparse coding based on
MCA algorithm. Lastly, the noise-removed version of WMSN video can be gained by
integrating the nonrain component of sparse part with the low-rank part of WMSN video.
Experimental results show that the performance of the proposed approach is competitive,
qualitative, and has greater ability to retain video feature information.
Keywords: Mixed Gaussian-rain noise removal, Inexact robust principle component
analysis, Morphological component analysis, Dictionary learning

1. Introduction. Wireless Multimedia Sensor Networks (WMSN) can undertake moni-
toring task independently, widely used in various kinds of fields [1]. However, the visual
quality of WMSN video is seriously affected by inclement weather and illumination vari-
ance, which will add multi-noises on the video [2]. In practice, the mixed Gaussian-rain
noise is one of the most common noises, which impairs the visibility or interpretability of
the video. Therefore, it is imperative to study new video denoising method to remove the
mixed Gaussian-rain noise in WMSN video.

Recently, many classical algorithms for video denoising have been proposed, such as
video block matching and 3D filtering (VBM3D) algorithm [3], non-local means (NLM)
algorithm and the denoising method based on sparse coding [4]. These video denoising
algorithms showed impressive results on suppressing Gaussian noise. However, in the
presence of sparse noise such as rain streaks, impulse noise, the performance of these
denoising algorithms noticeably decreases.

Inexact RPCA [5-7], an extended version of RPCA, can effectively eliminate the mixed
Gaussian-sparse noise in WMSN video. However, RPCA [8] and Inexact RPCA take most
feature information of moving objects and sparse noise in video as sparse part without the
ability of further distinguishing them. In [9] the robust temporal-spatial decomposition
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(RTSD) model is proposed to effectively remove impulse noise while retaining most feature
information of moving objects via combining RPCA with TV-l1 model. However, when
the video is corrupted by mixed Gaussian-rain noise, the denoising effects of RTSD model
is unsatisfactory as RPCA fails to separate Gaussian noise from video and TV-l1 model
cannot distinguish rain streaks from feature information of moving objects. Meantime,
the MCA-based decomposition method, a decomposition method based on sparse repre-
sentation, has excellent effect in the separation of rain streaks and feature information by
utilizing the morphological diversity of different components contained in the video [10].
Therefore, inspired by this, we combine Inexact RPCA with MCA to suppress mixed
Gaussian-rain noise in WMSN video.

The major contribution of this paper is twofold: 1) our method is among the first to
combine Inexact RPCA with MCA to remove mixed Gaussian-rain noise while preserving
feature information in video; 2) we do the dictionary learning every n frames and provide
an extended dictionary and update it every n frames to enrich the dictionary. The first
stage and the second stage of our proposed method are introduced in Section 2 and
Section 3, respectively. Section 4 gives a performance comparison of other methods and
the proposed method. Section 5 summarizes the paper.

2. The First Stage: WMSN Video Decomposition via Inexact RPCA. In this
paper, we proposed a video denoising method based on Inexact RPCA and MCA. Firstly,
we employ Inexact RPCA to decompose the video into three parts. The specific process
is as follows.

Let us consider a video with N frames, denoted as Q̃(1), · · · , Q̃(N), where the i-th
frame Q̃(i) ∈ RK1×K2 . For the sake of simplicity, each frame is reshaped as a column
vector, for example, Q̃(i) is reshaped as q (i) ∈ RK1K2×1. These vectors are combined into
a matrix Q ∈ RK1K2×N , with q (i) being the i-th column. We will decompose Q into three
parts: the low-rank part, Gaussian noise part and the sparse part via Inexact RPCA, as
follows:

min
L,S

∥L∥∗ + λ′ ∥S∥1 , s.t. ∥Q − L − S∥F ≤ δ (1)

Here, L is the low-rank part which represents the temporal-spatially correlated part,
S is the sparse part, λ′ is a suitable regularization parameter, in our approach, λ′ =
1/

√
max (K1, K2), where K1, K2 are the number of rows and columns of the matrix,

δ > 0 is the Gaussian noise level, Q represents the matrix of input video, and ∥·∥∗, ∥·∥F

are nuclear norm and Frobenius norm.
In our approach, we use the accelerated proximal gradient method (APG) to solve

Equation (1). The APG method has been demonstrated to be efficient in solving various
regularized convex optimization problems in compressed sensing, machine learning, and
control [11].

3. The Second Stage: MCA-based Sparse Part of Video Frames Decomposi-
tion. After the first stage, the Gaussian noise is removed, the low-rank part L and sparse
part S are decomposed from the video. In this stage, we perform the MCA-based decom-
position method to further decompose S into rain component and nonrain component.
The detailed method shall be elaborated below.

3.1. Preprocessing and problem formulation. For the sparse part of video frame,
S(i), i = 1, 2, · · · , N , in the preprocessing step, we apply a bilateral filter to roughly decom-
posing S(i) into low frequency part S(i)LF and high frequency part S(i)HF . Then, we learn
dictionary D(i)HF based on the training exemplar patches extracted from S(i)HF to further
decompose S(i)HF , where D(i)HF can be further divided into two subdictionaries D(i)HF−N

and D(i)HF−R (D(i)HF = [D(i)HF−N |D(i)HF−R]), for representing the nonrain component
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and rain component of S(i)HF , respectively. As a result, we formulate the problem of rain
streaks removal for S(i) as sparse coding-based image decomposition problem as follows:

min
θk
(i)HF

∥∥fk
(i)HF − D(i)HF αk

(i)HF

∥∥2

2
s.t.

∥∥αk
(i)HF

∥∥
0
≤ L′ (2)

where fk
(i)HF represents the k-th patch extracted from S(i)HF , k = 1, 2, . . . , P . αk

(i)HF are

the sparse coefficients of fk
(i)HF with respect to D(i)HF , and L′ denotes the sparsity or

maximum number of nonzero coefficients of αk
(i)HF . To solve Equation (2), we apply the

efficient OMP provided in [12].

3.2. Dictionary learning and partition. We do a dictionary learning every n frames
in our method. In this step, we extract from S(i)HF a set of overlapping patches wk

(i) as the
training exemplars for learning dictionary D(i)HF . We formulate the dictionary learning
problem as

min
D(i)HF , αk

(i)

P∑
k=1

(
1

2

∥∥wk
(i) − D(i)HF αk

(i)

∥∥2

2
+ λ

∥∥αk
(i)

∥∥
1

)
(3)

where αk
(i) denotes the sparse coefficients of wk

(i) with respect to D(i)HF , and λ is a reg-

ularization parameter. In this paper, we solve Equation (3) to obtain D(i)HF with an
efficient online dictionary learning algorithm proposed in [12], which scales up gracefully
to large data sets with millions of training samples, and extends naturally to various
matrix factorization formulations.

In the proposed method, we utilize the histogram of oriented gradients (HOG) descrip-
tor to describe each atom in D(i)HF . Then we apply the K-means algorithm to classify all
of the atoms in D(i)HF into two clusters D1 and D2 based on their HOG feature descrip-
tors. The following procedure is to identify which cluster consists of rain atoms and which
cluster consists of nonrain atoms. First, we calculate the variance of gradient direction
for each atom dtβ, β = 1, 2, . . . , Nt, in cluster Dt as Ftβ, where Nt denotes the number of
atoms in Dt, t = 1, 2. Then, we calculate the mean of Ftβ for each cluster Dt as MFtβ.
Based on the fact that the edge directions of rain streaks in an atom are usually consis-
tent, i.e., the variance of gradient direction for a rain atom should be small, we identify
the cluster with the smaller MFtβ as rain subdictionary D(i)HF−R and the other one as
nonrain subdictionary D(i)HF−N .

On the other hand, an extended dictionary DE is provided to further improve de-
composition performance. We first learn extended dictionary DE by collecting a set of
exemplar patches from the HF parts of the sparse part in some training nonrain frames,
and then update it every n frames by collecting training exemplar patches from the HF
part of the sparse part in the adjacent rain-removed frames. Subsequently, we integrate
DE with D(i)HF−N to form the final nonrain subdictionary D′

(i)HF−N . D(i)HF−R obtained
by dictionary partition is the final rain streaks subdictionary.

3.3. Removal of rain streaks. Based on the two dictionaries D(i)HF−R and D′
(i)HF−N ,

we perform sparse coding for each patch fk
(i)HF extracted from S(i)HF via minimization of

Equation (2) to find its sparse coefficients α̃k
(i)HF . We perform sparse coding only once for

each patch fk
(i)HF . Then, each reconstructed patch fk

(i)HF can be used to recover either

nonrain component SN
(i)HF or rain component SR

(i)HF based on the sparse coefficients as

follows. We set the coefficients corresponding to D′
(i)HF−N in α̃k

(i)HF to zeros to obtain

α̃k
(i)HF−R, whereas the coefficients corresponding to D(i)HF−R in α̃k

(i)HF to zeros to obtain

α̃k
(i)HF−N . Therefore, each patch fk

(i)HF can be re-expressed as:

f̃k
(i)HF−N = D′

(i)HF−N × α̃k
(i)HF−N (4)
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f̃k
(i)HF−R = D(i)HF−R × α̃k

(i)HF−R (5)

where f̃k
(i)HF−N and f̃k

(i)HF−R are used to recover SN
(i)HF and SR

(i)HF , respectively, by av-
eraging the pixel values in overlapping regions. Then, the nonrain component of sparse
part in the i-th frame S1(i) and the noise-removed version of the i-th frame V(i) can be
obtained via:

S1(i) = SN
(i)HF + S(i)LF (6)

V(i) = S1(i) + L(i) (7)

where L(i) is the low-rank part of the i-th frame. The noise-removed version of every
video frame can be easily acquired via implementing the above operation for every frame,
to achieve the final denoised video. In conclusion, the process of the proposed method
can be shown in Figure 1.

Figure 1. The process of the proposed method

4. Experiment Simulation and Results Analysis. For validating the performance
of proposed method, we compare our method with the VBM3D method and the RTSD
model. These methods are tested upon two WMSN videos: “Bus (352×288)” and “Road
(352 × 288)”, all of which are corrupted by mixed Gaussian-rain noise. The standard
deviation of Gaussian noise δ varies from 5 to 20, and the percentage of pixels corrupted
by rain streaks γ varies from 10% to 30%.

In our experiment, N = 50 video frames are used. The parameter λ′ in (1) is set to

1/
√

(352 × 288). The regularization parameter λ in (3) is set to 0.15. The patch size,
number of training patches, dictionary size, and the number of training iterations are set
to 16 × 16, 337 × 273, 1024 and 100, respectively. L′ in (2) is set to 10. In the extended
dictionary DE learning step, the patch size, dictionary size, and number of training itera-
tions are also set to 16× 16, 1024 and 200, respectively. The dictionary is updated every
n frames and n is set to 5. Firstly, Gaussian noise with σ = 10 and rain with 20% are
added to the videos, and then under the same experimental condition, VBM3D, RTSD
model and the proposed method are used to denoise for corrupted videos, respectively.
The key frames of Bus and Road are shown in Figures 2(a) and 2(f), respectively. The
different denoising results are shown in Figure 2. Table 1 tabulates average PSNR (Peak
Signal to Noise Ratio) values of the results for video denoising in the presence of mixed
Gaussian-rain noise with different levels.

Through analyzing Table 1 and Figure 2, We can find our method not only depresses
noise effectively, but also preserves the feature information better. From Table 1, it can
be observed that the proposed method achieves better performance in terms of average
PSNR to the two comparisons. No matter from the visual effect or PSNR, it is noticeable
that the proposed algorithm is superior to VBM3D and RTSD model. Therefore, the
proposed method is suitable for the WMSN video denoising as compared to the other
algorithms.
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Figure 2. Visual comparison of denoising results for Bus and Road of
different methods: (a) and (f) original data, (b) and (g) noisy input (σ = 10,
γ = 20%), (c) and (h) VBM3D method, (d) and (i) RTSD model, (e) and
(j) proposed method

Table 1. Average PSNR values of the results for video denoising

Video (δ, γ) Noisy frame VBM3D RTSD model Proposed

Bus
(5, 10%) 22.5480 22.7512 23.2416 25.7403
(10, 20%) 21.1902 21.7666 22.4632 23.4212
(20, 30%) 18.4298 19.3241 20.3975 21.5179

Road
(5, 10%) 22.6734 22.8905 24.9327 28.4723
(10, 20%) 20.3140 20.7878 23.9401 25.9810
(20, 30%) 17.2835 17.9165 20.0609 21.7361

5. Conclusions. In this paper, a mixed Gaussian-rain noise removal method based on
Inexact RPCA and MCA is proposed, which consists of two stages, namely WMSN video
decomposition via Inexact RPCA and MCA-based sparse part of video frames decompo-
sition. Compared with some state-of-the-art methods, our method shows greater ability
to retain video feature information, and achieves better visual quality. Therefore, the
proposed method is suitable for removing the mixed Gaussian-rain noise in WMSN video,
especially in video with moving objects. For future work, the performance of our method
may be further improved by enhancing the sparse coding, dictionary learning, and dictio-
nary partitioning processes.
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