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Abstract. Single image super resolution (SR) aims to estimate high resolution (HR)
image from the low resolution (LR) one, and estimating accuracy of HR image gradi-
ent is very important for edge directed image SR methods. In this paper, we propose a
novel edge directed image SR method by learning simple priors by mapping functions.
Recognizing that the training samples of the given sub-set for regression should have sim-
ilar local geometric structure based on clustering, we employ high frequency of LR image
patches with removing the mean value to perform such clustering. Then we learn effective
mapping functions of gradient of bicubic image patches and that of HR image patches for
each cluster. Experimental results suggest that the proposed method can achieve better
gradient estimation of HR image and competitive SR quality compared with other SR
methods.
Keywords: Super resolution, Edge directed, Gradient estimation, Mapping function

1. Introduction. Image super resolution (SR) is a fundamental and significant issue in
image processing community and computer vision applications. Generally, single image
SR aims to recover a high resolution (HR) image from the low resolution (LR) one [1].
The SR problem is inherently ill-posed given that many different HR images can produce
the same LR image when blurred and down-sampled.

Currently, approaches solving the SR problem, can be classified into four categories, i.e.,
interpolation based, learning based, reconstruction based and edge directed. Interpolation
based approaches estimate the high-resolution image by interpolating the unknown pixels
based on the surrounding known LR pixels, such as bicubic interpolation (Bicubic) and
multiscale semilocal interpolation (MSI) [2]. The underlying assumption of learning based
approaches [3-5] is that there exists an inherent relationship between LR and HR image
patch pairs. Then the relationship is learned and applied to a new LR image to recover its
HR version. In addition, reconstruction based approaches [6-13] highlight a reconstruction
constraint and back-projection (IBP) [6] is a classical reconstruction based method. IBP
introduces ringing or jaggy artifacts around edges because no regularization is imposed.
Due to these artifacts of the IBP method, the super resolution method based on gradient
profile prior (GPP) has made many improvements with different prior and regularization
term imposed [7]. In the prior of GPP, the image gradients are represented by gradient
profiles, which are 1-D profiles of gradient magnitudes perpendicular to image structures.
Based on the gradient profile prior, a gradient field transformation is used to constrain
the gradient fields of the high resolution image. The last category is about edge directed
approaches. Edge directed approaches refer to the methods based on the edge models,
where effective image edge priors [7-9] are enforced as a gradient domain constraint to
estimate the target HR image [7,9]. Thanks to the new algorithm, many scholars pay much

337



338 G. WANG, Z. GAN AND X. ZHU

attention to improve it. Adaptive gradient magnitude self-interpolation (GMSI) method
[11] and the super-resolution convolutional neural network (SRCNN) method [12] appear
in succession. By using an adaptive gradient magnitude self-interpolation, the GMSI
algorithm estimates the high resolution gradient, which is regarded as an edge-preserving
constraint to reconstruct the high-resolution image. Different from GMSI, SRCNN is a
deep learning method for single image super resolution. The SRCNN approach learns an
end-to-end mapping, which is represented as a deep convolutional neural network that
takes the low-resolution image as the input and outputs the high-resolution one.

Drawing a conclusion from previous work, instead of making use of gradient relationship
between LR and HR image patch pairs, most edge directed methods estimate HR gradi-
ents of images according to edge pixels position or gradient magnitude for whole image.
Motivated by it, we propose a novel edge directed image SR method by learning simple
priors of mapping functions [13]. In particular, the gradient of HR image is estimated
through its bicubic gradient and the learned coefficients. The main step of our method
is about gradient estimation and reconstruction. The step about gradient regression esti-
mation can further be divided into sample training and gradient estimation specifically.
Recognizing that the training samples of the given sub-set for regression should have
similar local geometric structure based on clustering, we employ high frequency of LR
image patches with removing the mean value to perform such clustering. Then for each
cluster, we learn the coefficients by mapping function of gradient of bicubic patches and
that of corresponding HR patches. In reconstruction, the estimated gradient is regarded
as a gradient constraint to guarantee that the resulted HR image preserves sharpness and
refrains from artifacts such as jaggy and blurring. Experimental results suggest that the
proposed method can achieve better gradient estimation of HR image and competitive
SR quality compared with other SR methods.

The remainder of the paper is organized as follows. Section 2 shortly introduces the
ordinary methods of the edge directed single image super resolution. Section 3 presents
the proposed new edge directed SR method. Simulation results are shown in Section 4.
Finally, conclusions are provided in Section 5.

2. Edge Directed Single Image Super Resolution. In the conventional SR problem
[6-8], the LR image is modeled as the Gaussian blurred and down sampled one of its HR
version. Namely, given the HR image Ih, the LR one Il is generated by

Il = (Ih ∗ G) ↓s (1)

where ∗ is a convolution operator, ↓ is a down-sampling operation, s is a scaling factor,
and G is a blur kernel which is commonly approximated as a Gaussian function. The
edge directed single image super resolution methods [7,11] usually model the SR problem
as Equation (2):

I∗

h = arg minIh

[
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where Ei (Ih|Il) is the reconstruction constraint in image domain, Eg

(

∇Ih|∇IT
h

)

is the
gradient constraint in gradient domain, ∇IT

h is the estimated HR gradient field, and pa-
rameter β is a weighting constant to balance these two constraints as a trade-off. In
experiments, a larger β imposes more importance on the gradient domain, which con-
tributes to producing sharp edges with little artifacts. Conversely, a smaller β places
much importance on the image domain, resulting in better image color and contrast, yet
with ringing or jaggy artifacts along edges. The reconstruction constraint measures the
difference between the LR image Il and the smoothed and down-sampled version of the
HR image, i.e.,

Ei (Ih|Il) = |(Ih ∗ G) ↓s −Il|2 (3)
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The gradient constraint requires that the gradient ∇Ih of the recovered HR image should
be close to the estimated gradient ∇IT

h as Equation (4). This paper mainly focuses on
the estimation of ∇IT

h , which will be presented in Section 3.1.
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2
(4)

3. Proposed Edge Directed Super Resolution Method.

3.1. Sample training.
(1) Clustering of sample sets

Since natural images are abundant and easily acquired, we can assume that there are
sufficient exemplar patches available for each cluster. Only meaningful image patches
whose variance is greater than TH1 are selected.

Firstly, as shown in Figure 1, for a scaling factor 3, only the pixels on position 1 in Ibic

are from LR image directly. While other pixels on positions 2 to 9 are interpolated by the
surrounding pixels on position 1. Therefore, overlapped patches in Ibic can be classified
into 9 classes centered by the 9 kinds of pixels. From each Ih and the corresponding
Ibic, a large set of patches P̂c (c = 1, 2, . . . , 9) of Ibic and corresponding HR gradient
patches ∂xIh and ∂yIh can be cropped. For a patch Pc in Ibic, we compute its mean

value as µ and extract the feature P̂c as the intensity Pc minus µ. Denote the gradient
field ∇Ih = (∂xIh, ∂yIh), and the image Ih is convolved respectively by discrete gradient
operator k1 = [−(1/2), 0, (1/2)] and k2 = kT

1 to obtain ∂xIh and ∂yIh.

Secondly, we adopt the K-means method to partition P̂c into K clusters
{

P̂c1, P̂c2, . . . ,

P̂cK

}

and denote by Cck the center of P̂ck. For given image patch, the most suitable cluster

can be selected to estimate its HR gradient. Here K is usually set as integer power of 2
so that classification can be implemented with binary tree to improve efficiency.

Figure 1. Patches classified into 9 classes by central pixel position for a
scaling factor 3

(2) Regression coefficients
Supposing there are l LR exemplar patches belonging to the same cluster, let (∇Ic)i =

[

(∇xIc)i , (∇yIc)i

]

and (∇Ih)i =
[

(∇xIh)i , (∇yIh)i

]

(i = 1, . . . , l) be gradient vector of
bicubic and HR patches respectively, in dimension m. Here we only calculate the gradient
in central region. We learn a set of linear regression functions to individually predict the
values of HR gradient. Let ∇xIc ∈ Rm×l and ∇xIh ∈ Rm×l be the matrix of (∇xIc)i and
(∇xIh)i, and ∇yIc ∈ Rm×l and ∇yIh ∈ Rm×l be the matrix of (∇yIc)i

and (∇yIh)i
, and

we compute the regression coefficients C∗

x, C
∗

y ∈ Rm×(m+1) by
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where 1 is a 1× l vector with all values as 1. A set of functions is learned to map a bicubic
gradient patch to the corresponding HR gradient patch in central region.

3.2. Proposed gradient estimation of super resolution image. Based on the fact
that gradients of similar samples in one cluster are alike, we can estimate gradient of
a patch by HR gradient of samples in the same cluster with their feature regression
coefficients. Given the LR image Il, we upsample it to obtain bicubic interpolated one Ibic.
For patches whose variance is larger than a threshold TH1 in Ibic, we perform our gradient
estimation method to reduce computational complexity. And for the other patches, we
use gradient of bicubic images instead. For each cropped image patch p with size n × n
in Ibic, p̂ is the high-frequency component as p minus its mean value u. Then we find the
cluster that p̂ belongs to by the standard of minimum Euclidean distance as Equation (6)

k∗ = arg mink ‖p̂− Cck‖2
2 , k = 1, . . . , K (6)

where Cck is the cluster center of the cluster labeled by c and k. According to the cluster
center, we apply the learned coefficients to compute the HR gradient of the patch by

∇xph = C∗

x

(

∇xp
1

)

; ∇yph = C∗

y

(

∇yp
1

)

(7)

where ∇xp and ∇yp are the gradient vectors of the central region of p, and ∇xph and
∇yph are the estimated gradients of it. We estimate gradient of each patch independently.
Then to obtain the estimated image gradient, we average each pixel as it appears in the
different patches.

3.3. Reconstruction of super resolution image. The estimated ∇IT
h above is re-

garded as the gradient constraint in edge directed SR model as Equation (2). The objec-
tive energy function in Equation (2) is a quadratic function with respect to Ih; therefore,
it is convex and the global minimum can be obtained by the standard gradient descent by
solving the gradient flow equation. In our implementation, we use the following iterative
schemes to optimize it:

I t+1
h = I t

h − τ · ∂E
(

Ih|Il,∇IT
h

)

∂Ih

= I t
h − τ ·

[

((Ih ∗ G) ↓s −Il) ↑s ∗ G − β
(

div (∇Ih) − div
(

∇IT
h

))]

(8)

where div (∇·) = ∂2

∂x2 + ∂2

∂y2 is the Laplacian operator, div (∇Ih) = ∂(∂xIh)
∂x

+ ∂(∂yIh)

∂x
. It can

be carried out using standard finite difference scheme and τ is the step size.

4. Experiments. We select the Berkeley Segmentation Datasets [14] as our training set
and test our method on a variety of test examples. 9 test images are shown in Figure
2. Note that, for color images, we transform them from RGB color space to YUV space.
As human vision is more sensitive to luminance information, we only apply the proposed
edge directed method on luminance channel (Y) and up-sample chrominance channels
(UV) by bicubic interpolation. Finally, YUV are transformed into RGB as the final SR
result.

Figure 2. 9 test images
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Because of memory limitation (8GB) of the computer, we randomly collected 106

patches for 9 classes from the Berkeley Segmentation Datasets. The number of clus-
ters is a trade-off between result quality and training computational complexity. With
more clusters, the most suitable cluster can be selected to estimate HR gradient for the
given patch, so that the estimated gradient is close to HR gradient and meanwhile high-
frequency regions of the reconstructed image are better with less jaggy artifacts along
edge. In our experiments, K is set as 2048.

For comparison with other methods, we use the bicubic down-sampled version as the
low-resolution image. For a scaling factor 3, the patch size n is set as 11 and

√
m = 7.

We set TH1 as 10 in sample training. In construction, in terms of the objective indicator
and visual effect, β and τ are respectively set as 0.05 and 1.9 with number of iterations
set as 30.

MSE between estimated gradient and HR gradient is calculated to evaluate their simi-
larity and the fidelity of estimated gradient. The gradient MSE results of bicubic, GPP
[7], GMSI [11] and our method are listed in Table 1 and part images of estimated gradient
maps are shown in Figure 3. From Table 1, our error of estimated gradient is less than
that of GMSI and GPP. From Figure 3, we can see the gradient of our method is sharper
and much closer to the HR gradient compared to GMSI and GPP, because we estimate
patch gradient with HR gradient of similar samples in the same cluster.

Table 1. MSE of gradient on nine examples

Test images Bicubic GPP [7] GMSI [11] Our method
Zebra 9.952 10.327 12.050 7.232
baby 4.102 4.533 4.618 3.564

barbara 11.984 12.284 12.383 11.372
bird 5.177 5.639 5.882 4.001

foreman 8.378 8.731 8.983 7.394
head 5.066 5.428 5.275 4.737
lady 7.706 8.020 8.798 5.448
lenna 5.408 5.689 5.926 4.338

monarch 7.682 7.861 9.420 5.547
Mean value 7.273 7.612 8.148 5.959

Figure 3. Comparisons of estimated gradient with bicubic, GPP [7] and
GMSI [11]: (a) part of bicubic interpolated image; (b) the gradient field of
images in (a); (c) transformed gradient of GPP [7]; (d) transformed gradient
of GMSI [11]; (e) estimated gradient of our method; (f) ground truth gra-
dient
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Table 2. Performance in PSNR and SSIM on the 9 color images

Test images
IBP [6] GPP [7] GMSI [11] SRCNN [12] Our method

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Zebra 27.80 0.8370 27.89 0.8390 28.10 0.8458 28.88 0.8485 29.19 0.8558

baby 34.83 0.9210 34.88 0.9214 35.13 0.9239 35.04 0.9215 35.27 0.9250

barbara 26.68 0.7836 26.71 0.7843 26.71 0.7877 26.59 0.7828 26.74 0.7885

bird 33.59 0.9401 33.67 0.9412 34.33 0.9487 34.71 0.9491 34.82 0.9508

foreman 30.51 0.9141 30.72 0.9171 30.73 0.9295 30.77 0.9288 31.13 0.9324

head 33.27 0.8227 33.31 0.8231 33.47 0.8258 33.40 0.8224 33.52 0.8260

lady 30.27 0.9086 30.36 0.9102 30.86 0.9232 31.73 0.9244 32.37 0.9309

lenna 33.05 0.8975 33.12 0.8982 33.69 0.9035 33.99 0.9044 33.98 0.9053

monarch 30.35 0.9300 30.54 0.9321 30.72 0.9368 32.43 0.9454 32.12 0.9459

Mean value 31.15 0.8838 31.24 0.8852 31.53 0.8917 31.95 0.8919 32.13 0.8956

Note: IBP, our method is implemented on the same parameters: τ = 1.9, β = 0.05, and iterations = 30.
Parameter of GMSI is τ = 1.9, β = 0.01 and iterations = 30 (Bold: best, underline: second best).

Figure 4. Part super resolution results of Zebra with comparison (3×)
of other edge directed methods: (a) bicubic upsample (26.64dB/0.7961);
(b) back-projection (27.80dB/0.8370) [6]; (c) GPP (27.89dB/0.8390) [7];
(d) GSMI (28.10dB/0.8458) [11]; (e) SRCNN (28.88dB/0.8485) [12]; (f)
our method (29.19dB/0.8558); (g) ground truth. The first line is gradient
domain. Among them, (a)-(f) are estimated gradient and (g) is the ground
truth gradient.

Figure 5. Super resolution results of Lady with comparison (3×) of other
methods: (a) IBP (30.27dB/0.9086) [6]; (b) GPP (30.36dB/0.9102) [7]; (c)
GMSI (30.86dB/0.9232) [11]; (d) SRCNN (31.73dB/0.9244 ) [12]; (e) our
method (32.37dB/0.9309)

Moreover, the PSNR and SSIM [15] results are just calculated on Y channel to measure
the SR results qualitatively, which are listed in Table 2. We compared our algorithm
with IBP [6], GPP [7], GMSI [11], and SRCNN [12]. Figure 4 presents two comparisons



ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.7, NO.2, 2016 343

of our method with these methods in image domain and gradient domain. As shown in
the figure, images are blurred by bicubic interpolation and jagged along edges by back-
projection. GMSI method estimates a much sharper gradient domain, leading to edges
of the reconstructed image sharper yet unnatural and artificial (refer to close-ups). The
main reason is that the goal of GMSI is to obtain gradient domain which is sharper but
not close to HR gradient. Figure 5 presents one example with these methods in image
domain. As shown, the results of GMSI are very sharp, with rare ringing and blurring.
However, unreal parts begin to appear and small scale edges are not well recovered. For
example, eye area of Lady face seems to be very unreal.

In implementation, the computational load is only linear multiplication and linear addi-
tion for calculating the gradient of a patch. The total computation complexity is linearly
dependent on the number of high frequency patches in the bicubic interpolated image.

5. Conclusions. In this paper, a novel edge directed image SR method by learning
based gradient estimation has been presented. In proposed method, the gradient of HR
image is estimated by using regression model of simple function. Considering the fact
that the training samples of the given sub-set for regression should have similar local
geometric structure based on clustering, we employed bicubic interpolated image patches
with removing the mean value to perform clustering. Moreover, the simple mapping
function reduced the computational complexity further. In reconstruction, the estimated
gradient was regarded as the gradient constraint to guarantee that the resulted HR image
preserves sharpness and refrains from artifacts. Experimental results show that estimated
gradient of our proposed method is much close to the ground truth and recovered image
can preserve sharper edge compared with other SR methods.

In the future, we want to speed up the proposed super-resolution algorithm, and then
extend the proposed method to video super-resolution and enhancement. We are also
interested in applying the nonlinear regression functions to estimate the gradient of HR
image.
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