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Abstract. The structure of complex software systems can be extracted as a complex
software network, and the quality of software systems largely depends on the topological
structure of the software network. A small portion of important nodes plays a critical
role in ensuring the stability and quality of the software system. Identifying these impor-
tant nodes in software network has become an important and challenging task of software
engineering. In this paper, firstly we construct a model of directed weighted software net-
work. Then, by analyzing the bug propagation process on weighted software network, the
values of some metrics related to ripple effects are calculated. Finally, important nodes
whose ripple effects are larger than average ripple effect are identified by our proposed
approach. Experimental results on real software data show the utility of the approach.
Keywords: Complex software network, Important node, Bug propagation, Ripple effect

1. Introduction. In modern society, many of our daily activities are dependent on the
correct working of software systems. Therefore, ensuring the reliability and stability of
software system is becoming an important and challenging task of software engineering.

The latest research implies that the quality of a software system is highly affected by a
small portion of important nodes [1, 2]. Identifying these important nodes has remarkable
significance for predicting the quality of software early and providing guidance for software
structure design and optimization.

Myers [3] firstly adopted complex software networks to represent software systems. The
nodes and edges correspond to software components and interactions between each com-
ponent respectively. Callaw et al. [4] conducted an analysis of nodes’ degree and pointed
out that a node with larger degree was more important than others, while the method
is low-relevant to global structure information and may come to an unsatisfactory result.
Considering a node that connects two communities in a network, it does not have a large
degree, but it is very important because the two communities will not connected if the
node is failed. Li et al. [5] introduced a model of weighted software network to represent
a software’s structure and the importance of a specific class is defined as the average num-
ber of nodes that have been affected by the faulty node. Chen et al. [6] proposed a local
centrality measure which considers both the nearest and the next nearest neighbors of a
node, while the research was conducted in undirected and unweighted networks and it is
not appropriate in the research of identifying important nodes in directed weighted soft-
ware network. He et al. [7] adopted relative node measurement score (RNMS) to measure
the importance of nodes in software execution network and treated nodes whose RNMS
equals median of all nodes’ RNMS as important nodes. Ren et al. [1] proposed a key
node mining approach based on weighted semi-global structure information (KNMWSG)
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to mine key function nodes in directed weighted software network. To some extent, it
is neither low-relevant to global information nor time-consuming. However, only taking
part of the structure information may lose some important information inevitably. The
concept of ripple degree proposed in [8] can be used to identify important nodes, i.e.,
these nodes which have large ripple effects have a significant influence on the reliability
and stability of a software system. However, the ripple effect of a node was just defined as
the size of its reachable nodes set, which does not take reachable probability into account.
The other shortcoming is that it did not differentiate whether a node is a maker of the
ripple effect, or an affected object of the ripple effect. Approach Software Network Key
Node miNing (SN-KNN) mentioned in [9] mines key function callers and key function
callees respectively. However, the weight of directed edges among a node’s neighbors is
neglected.

In fact, in the directed weighted software network, if a node fails, it can affect other
nodes with a certain probability (a maker of ripple effect). On the other hand, if a
node is affected by other failed nodes with a certain probability, it is an affected object.
Therefore, in this paper, we study two different cases: forward weighted ripple effect and
reverse weighted ripple effect (detailed definitions are given in Section 2). The nodes
that have larger forward ripple effect than average forward ripple effect are deemed as
important fragile nodes. On the other hand, the nodes that have larger reverse ripple
effect than average reverse ripple effect are deemed as important rigescent nodes.

The major contributions of this paper can be summarized as follows.

• Some practical metrics are defined to measure the importance of nodes within a
software network.

• Important fragile nodes and rigescent nodes are identified by our proposed approach.

This paper is arranged as follows. Section 2 provides preliminary definitions. Section 3
is a detailed description of our approach. Section 4 shows the experiment results, followed
by conclusions and future work in Section 5.

2. Preliminary Definitions. In this section, we describe preliminary details about some
metrics related to ripple effects.

Definition 2.1. Forward Weighted Ripple Effect (ForWere). Given a node vi,
NSF (vi) is the nodes set that is reachable from vi (If there is a directed path of arbitrary
length from node v1 to node v2, then we say v2 is reachable from v1). PSE(vi, vj) is a
paths set that vi is the source node and node vj is the end node of each path. Notation Pn

means that if node vj fails, it will affect node vi with probability Pn via pathn. Notation
Wvs→vt is the weight of directed edge< vs, vt >.

ForWere(vi) = 1.0 +

vj∈NSF (vi)∑
vj ̸=vi

|PSE(vi,vj)|∑
n=1

Pn (1)

Pn =

vs→vt∈PSE(vi,vj)∏
vs ̸=vt

Wvs→vt (2)

A node vi of course would be affected by itself if it fails; therefore, we add 1.0 to
ForWere(vi) in Equation (1). A large value of ForWere(vi) indicates that node vi may
be affected by other nodes with a large probability, implying it is fragile.

Definition 2.2. Reverse Weighted Ripple Effect (ReWere). For a node vi, NST (vi)
is the nodes set that is reachable to vi. PSE(vj, vi) is a paths set that vj is the source
node and node vi is the end node of each path. Notation Pn means that if node vi fails, it
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will affect node vj with probability Pn via pathn.

ReWere(vi) = 1.0 +

vj∈NST (vi)∑
vj ̸=vi

|PSE(vj ,vi)|∑
n=1

Pn (3)

Pn =

vs→vt∈PSE(vj ,vi)∏
vs ̸=vt

Wvs→vt (4)

A node vi with large value of ReWere indicates that if it fails, it may affect other nodes
with a large probability, implying it is rigescent.

Definition 2.3. Average Weighted Ripple Effect (AvgWere). AvgWere of a soft-
ware network is defined as the following formulas, in which NForWere=1.0 refers to the
number of nodes whose ForWere is 1.0 (out-degree is 0) and NReWere=1.0 refers to the
number of nodes whose ReWere is 1.0 (in-degree is 0).

AvgForWere =

∑|V |
i=1 ForWere(vi) − NForWere(vi)=1.0

|V | − NForWere(vi)=1.0

(5)

AvgReWere =

∑|V |
i=1 ReWere(vi) − NReWere(vi)=1.0

|V | − NReWere(vi)=1.0

(6)

Definition 2.4. Important Node (ImpND). If ForWere(vi) is larger than AvgFor-
Were, then node vi is deemed as an important fragile node. Similarly, if ReWere(vi) is
larger than AvgReWere, then node vi is deemed as an important rigescent node.

3. Important Node Mining Approach. The framework of our approach works in a
four-step process. Firstly, the model of directed weighted function dependency network
(DWFDN) is constructed by taking functions as nodes and function dependency rela-
tionships as directed edges. The detailed construction process is given in our previous
work [9]. Secondly, the network is traversed with Depth-First-Search strategy to obtain
all possible execute paths. Next, values of metrics defined in Section 2 are calculated.
Finally, important nodes are identified by our approach. Figure 1 shows the work flow of
our approach.

void main(){

...

a=fun();

...
}

source code

data collection functions &
dependency
relationship

DWFDN
construct traversing

ImpND

compute

Execute 
paths

metrics’ 
value

identify

Figure 1. Framework of our research

Taking the process of identifying important fragile node as demonstration, Algorithm
1 is proposed to compute the ForWere of each node vi in software network. HMP is a
map (a data structure in JAVA language), in which the map’s key corresponds to the
paths, and the corresponding value of a key is the product of edges’ weight. EPS is a
data set storing all possible execute paths. Sub-EPS is a subset of EPS. Line 3 prunes
away the execute paths that do not contain node vi, leaving a subset Sub-EPS. For an
execute path ep ∈ Sub-EPS, the nodes after the index of node vi are extracted (node vi

may be affected by these nodes, line 5 to line 7). All keys and corresponding values of
map HMP are identified (Line 8 to Line 18). ForWere(vi) is obtained by totalizing all
the products (Line 20 to line 22).
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Algorithm 1 : calculateForWere(vi, EPS)

Input: vi, EPS
Output: ForWere(vi)
1: HashMap<String, Double> HMP = new HashMap<String, Double>()
2: initialize HMP.put<vi, 1.0> // affected by node vi itself
3: get a Sub-EPS of EPS that each execute path ep ∈ Sub-EPS contains vi

4: for each ep ∈ Sub-EPS do
5: int index = index of vi in the ep
6: Sub-ep = ep.substring(index)
7: initialize an array NodeArr with the nodes contained in Sub-ep
8: TempPath = PreNode = vi

9: for each node vj in NodeArr do //vj is reachable from vi

10: PreTempPath = TempPath
11: Insert node vj into the tail of string TempPath // extending a path step by step
12: if (!HMP.containsKey(TempPath)) then
13: PreValue = HMP.get(PreTempPath)
14: NewValue = PreValue∗WProNode→vj

15: HMP.put(TempPath, NewValue)
16: end if
17: PreNode = vj

18: end for
19: end for
20: for each entry in HMP do
21: ForWere(vi) += entry.getValue()
22: end for
23: return ForWere(vi)

Example 3.1. Take Figure 2 as an example. The weight of each directed edge is computed
according to the method mentioned in our previous work [9]. The software network’s all
possible execute paths are obtained by traversing the network based on Depth-First-Search
strategy. For node v2, NSF(v2) = {v3, v4, v5, v6, v7, v8}, PSE(v2, v3) = {v2 → v3}, PSE(v2,
v4) = {v2 → v4}, PSE(v2, v5) = {v2 → v4 → v5}, PSE(v2, v6) = {v2 → v3 → v6, v2 →
v4 → v5 → v6}, PSE(v2, v7) = {v2 → v3 → v6 → v7, v2 → v4 → v5 → v6 → v7},
PSE(v2, v8) = {v2 → v3 → v6 → v8, v2 → v4 → v5 → v6 → v8}. According to Equation
(1) and Equation (2), ForWere(v2) = 1.0+(Wv2→v3 +Wv2→v4+Wv2→v4∗Wv4→v5 +(Wv2→v3∗
Wv3→v6 + Wv2→v4 ∗ Wv4→v5 ∗ Wv5→v6) + (Wv2→v3 ∗ Wv3→v6 ∗ Wv6→v7 + Wv2→v4 ∗ Wv4→v5 ∗
Wv5→v6 ∗Wv6→v7)+(Wv2→v3 ∗Wv3→v6 ∗Wv6→v8 +Wv2→v4 ∗Wv4→v5 ∗Wv5→v6 ∗Wv6→v8)) = 2.0.
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Figure 2. A directed weighted software network and its all execute paths
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As stated in Section 2, if ForWere(vi) is larger than AvgForWere, then node vi is
deemed as an important fragile node. Algorithm 2 is introduced to identify all important
fragile nodes of a software network. ImpND-DB-fragile is a data set storing all important
fragile nodes. Notation NForWere=1.0 is the number of nodes whose ForWere is 1.0. Line 2
to line 8 compute the AvgForWere. For each node vi in software network, if ForWere(vi)
is larger than AvgForWere, then node vi is added into ImpND-DB-fragile (line 9 to line
13).

Algorithm 2 : Identifying important fragile nodes based on ripple effects

Input: ForWere(vi) of each node vi in software network
Output: ImpND-DB-fragile
1: initialize TotalForWere = 0.0, NForeWere=1.0 = 0, TempValue = 0.0
2: for each node vi in software network do
3: TotalForWere += ForWere(vi)
4: if (ForWere(vi) == 1.0) then
5: NForWere=1.0++
6: end if
7: end for
8: AvgForWere = (TotalForWere – NForWere=1.0) ÷ (|V| – NForWere=1.0)
9: for each node vi in software network do

10: if (ForWere(vi) is larger than AvgForWere) then
11: ImpND-DB-fragile.add(vi)
12: end if
13: end for

The process of identifying important rigescent nodes is similar to that of fragile nodes.
Due to space limitation, we do not give the detailed description here.

4. Experiments. Open source softwares Cflow and Tar are chosen to validate the util-
ity of our approach based on ripple effects (represented as AppBORE ). The approach
based on degree centrality (abbr. as D-Based), the approach mentioned in [8] (repre-
sented as AppBase) and the approach mentioned in [9] (abbr. as SN-KNN ) are chosen as
the comparing approaches.

Table 1, Table 2, Table 3 and Table 4 show the ranking comparisons of fragile and
rigescent nodes among different approaches respectively. Notations RAppBORE, RAppBase

and RSN -KNN represent the ranking result obtained by approach AppBORE, AppBase
and SN-KNN respectively. Notations Ko and Ki correspond to the value of out-degree
and in-degree of a node. As it is shown, the ranking has no correlation with the value of
Ko and Ki. Therefore, it is not appropriate to identify important nodes by considering
the nodes’ degree.

Approach SN-KNN is only taking part of the structure information into considera-
tion. What is more, the weight of directed edges among a node’s neighbors is neglected.
Therefore, the approach may lose some important overall structure information inevitably,
leading to that the ranking result may not be reasonable enough. As has been stated in
Section 1, approach AppBase just defines the ripple effect of a node as the size of its reach-
able nodes set, which does not take reachable probability into account. In other words,
it assumed that a bug in one node will definitely propagate to other nodes that point to
it directly and indirectly in software networks, while it is contrary to the objective facts.
Consequently the ranking result obtained by approach AppBase may not be reasonable
enough, too. In our approach AppBORE, we think that a bug in one node can propagate
to other nodes via all possible execute paths, and the weight of each directed edge is



262 J. REN, H. WU, R. GAO, G. HUANG AND J. DONG

Table 1. Ranking comparison of fragile nodes of Cflow

function node RAppBORE RAppBase RSN -KNN Ko

yyparse 1 1 1 5
parse typedef 2 2 10 5

dcl 3 4 6 3
dirdcl 4 5 9 4

parse declaration 5 3 2 4
maybe parm list 6 6 4 3

parse function declaration 7 7 3 3
func body 8 8 5 6

parse variable declaration 9 9 8 8
parse dcl 10 11 12 5

Table 2. Ranking comparison of rigescent nodes of Cflow

function node RAppBORE RAppBase RSN -KNN Ki

yyrestart 1 20 34 2
yywrap 2 24 7 1

yy get next buffer 3 27 6 1
yylex 4 28 2 1

delete statics 5 22 43 1
static free 6 7 9 1

linked list destroy 7 10 28 3
yy load buffer state 8 11 21 3

yy create buffer 9 17 47 1
ident 10 25 22 1

Table 3. Ranking comparison of fragile nodes of Tar

function node RAppBORE RAppBase RSN -KNN Ko

create archive 1 1 2 8
dump file 2 2 1 3
dump file0 3 3 3 17

start header 4 8 9 9
dump regular file 5 6 6 8

dump dir 6 4 4 3
dump hard link 7 7 7 7

dump dir0 8 5 5 7
to chars 9 41 19 1

open archive 10 9 8 2

considered. So the ranking of each function node is different among different approaches,
as it is shown in Table 1, Table 2, Table 3 and Table 4.

The number of important fragile and rigescent nodes identified by different approaches
are shown in Figure 3(a) and Figure 3(b). For approach D-Based, a node with a degree
larger than the average degree of the network is deemed as an important node. We have
analyzed that the importance of a node has no correlation with its degree. So the number
of important nodes identified by D-Based is not much meaningful. For approach SN-
KNN, it does not take the weight of edges among a node’s neighbors into consideration,
accordingly the result may not be very precise. The definition of ripple effect and the bug
propagate process are not reasonable in approach AppBase, so the number of important
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Table 4. Ranking comparison of rigescent nodes of Tar

function node RAppBORE RAppBase RSN -KNN Ki

dump file0 1 85 2 1
dump file 2 98 3 2

create archive 3 109 10 1
dump regular file 4 61 5 1

dump dir 5 63 7 1
dump hard link 6 62 9 1

start header 7 31 4 3
dump dir0 8 50 13 1

open archive 9 101 39 1
to octal 10 3 1 1
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Figure 3. Comparisons of ImpND number among different approaches

nodes is not quite reasonable, too. For our approach AppBORE, there is no big difference
between the number of important nodes for different softwares, as shown in Figure 3(a)
and Figure 3(b). For example, Softwares Cflow and Tar both have 23 important rigescent
nodes, and the number of important fragile nodes display little difference. In other words,
approach AppBORE is widely suitable.

5. Conclusions and Future Work. A small portion of important nodes play a critical
role in ensuring the stability and quality of the software system. In this paper, we focus on
identifying important fragile and rigescent nodes in software network. Firstly, the model
of directed weighted software network is constructed. Then, some metrics such as ForWere
and ReWere are adopted to measure the importance of the nodes. If ForWere(vi) is larger
than AvgForWere or ReWere(vi) is larger than AvgReWere of the software network, then
node vi is deemed as an important node. Experimental results on real software data show
the utility of the approach.

As future work, we are looking into extending the approach to other granularity of
software component and evaluating utility of the approach.
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