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Abstract. In this paper we study the joint optimization of Gaussian mixture model pa-
rameters in speaker identification. First, we introduce the baseline speaker identification
system. Second, we study the feature optimization and we simplify the transform matrix
into a feature selection vector in speaker identification. Third, The joint estimation of
the parameters is proposed based on the shuffled frog leaping algorithm. The traditional
expectation-maximization algorithm is embedded in the proposed algorithm. The experi-
mental results show that the proposed optimization framework is effective and achieved a
constant improvement in speaker identification.
Keywords: Speaker identification, Gaussian mixture model, Optimization algorithm

1. Introduction. Speaker identification (SI) is an important biometrics field [1, 2, 3].
With the development of speech signal processing and machine learning, it has made
significant progresses over the past decade.

Ding and Yen [4] proposed to use Gaussian mixture model (GMM) for speaker identifi-
cation, and achieved improved results over the traditional methods. Kinnunen and Li [5]
studied the text-independent speaker identification problem. In their work, the speaker
identification system is generalized to various text content by using super-vectors. Wu
and Tsai [6] propose to use a decomposition based algorithm to improve the overall per-
formance. However, the model is largely dependent on the empirical settings. Kinnunen
et al. [7] studied the speech conversion influence on the signal features and improved the
performance in telephone voice recognition.

Gaussian mixture model is one of the most promising algorithms for speaker identifi-
cation. However, Gaussian mixture model based classifier is dependent on the empirical
parameter setting. Therefore, the effectiveness of the parameter estimation algorithm is
key to the success of GMM based speaker identification.

In this paper we propose a novel optimization algorithm for GMM based speaker iden-
tification. The overall optimization steps are demonstrated in the flowchart in Figure
1. The number of dimensions is an important factor for the feature space optimization,
and the “curse of dimensionality” prevents this number from being too big on a specific
recognition problem. The feature selection step in our optimization method is converted
from the traditional hard decision into soft decision. A specific feature dimension is either
selected or not selected in the traditional feature selection method. In our algorithm,
we give each dimension a weight between zero and one indicating the importance of the
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Figure 1. A depiction of the overall optimization flowchart

specific feature. The value one is the most important and the value zero is the least im-
portant. This is important for some practical situations when part of the features cannot
be extracted successfully [8].

After the feature space optimization, the Gaussian parameters can be estimated upon
it. First, we need to assume a fixed number of Gaussian members. Second, we can apply
certain parameter estimation algorithm to find the optimal result. The mixture weights
are generally achieved together in this process. However, the number of dimensions and
the number of Gaussian members are usually set empirically in existing methods. This
will cause an ill-posed foundation for the Gaussian model parameter optimization. In
this paper, we use a joint optimization of all of the above parameters to find a global
optimization for both feature space and recognition model.

The rest of the paper is organized as follows. Section 2 gives the general description
of our speaker identification system; Section 3 provides a simplified solution of feature
space optimization in our application; Section 4 describes the core optimization algorithm
used in our system; Section 5 gives the detailed steps of the proposed joint optimization;
Section 6 provides the detailed experimental results, and finally, conclusions are given in
Section 7.

2. The General Speaker Identification System. In this paper, we use the Mel-
frequency cepstrum coefficients (MFCC) as the speaker identification features. The MFCC
features can be extracted from speech spectrum and used as a unique character of the
target speaker. As shown in Figure 2, the 12-th order MFCC features are constructed in
the time domain and the Mel-frequency domain. The grey scale indicates the value of a
coefficient.

The speaker identification can be achieved by maximizing the likelihood of series of
Gaussian mixture model outputs. As shown in Equation (1), the likelihood is computed
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Figure 2. MFCC features for speaker identification system

over the entire speech utterance.

H(xt) =
T∏

t=0

M∑
i=1

ωi ∗ pi(xt) (1)

where H is the likelihood of a given speaker, xt is the feature vector in time domain, t
is the discrete time index corresponding to speech frames, T is the total length of speech
frames, M is the number of Gaussian members, ωi is the mixture weight, and pi is the
i-th Gaussian model output.

The similarity of two speakers is then measured by this likelihood ratio, and by maxi-
mizing it we can find the target speaker identity, as shown in Equation (2).

SpeakerID = arg max
j

{Hj} (2)

where Hj is the likelihood of a specific speech utterance computed by the method in
Equation (1).

3. The Feature Space Optimization. Feature space optimization is an important step
for GMM parameter estimation. Although the estimation algorithm converges to a certain
degree, the estimated parameter cannot bring a good recognition performance without
the proper setting of the features.

In our application, the speaker features involve 12-order MFCC features. The total
number of the original feature dimension is 13 including the zero-order MFCC feature
which relates to the intensity. The selected feature dimensions can be an number between 1
to 13, though the training stage may require some minimum dimension numbers dependent
on the character of different algorithms.

An n × m conversion matrix can transform the n-dimensional feature vector into an
m-dimensional feature vector, with reduced dimensionality, as shown in Equation (3).

xm×1 = Cn×m × fn×1 (3)

where f is the original 13-dimensional feature vector and x is the reduced feature vector.
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In this paper, we only select subset of the MFCC features for the speaker identification
problem, and the conversion matrix Cn×m is reduced down to an n-dimensional vector
with m non-zero values and n − m zeros.

4. The Shuffled Frog Leaping Algorithm. In this paper, we adopt a powerful meta-
heuristic optimization algorithm namely shuffled frog leaping algorithm (SFLA) for the
parameter searching. In reference [9], an improved version of the SFLA is introduced and
we apply this variant to our speaker identification problem.

Velocity-Verlet algorithm is introduced to the original SFLA. It is a powerful solution
to the motion equation in the molecular dynamics, as shown in Equation (4) and Equation
(5).

r(τ + ∆τ) = r(τ) + v(τ)∆τ + 0.5a(t)∆τ 2 (4)

v(τ + ∆τ) = v(τ) + 0.5[a(τ) + a(τ + ∆τ)]∆τ (5)

r is the position, v is the velocity, τ is the time and a is the acceleration.
The Velocity-Verlet algorithm is applied to the original SFLA algorithm to update the

worst individual’s position, velocity and acceleration, as shown through Equation (6) to
Equation (9) [9].

a(k) = λe|rg−r(k)|(rg − r(k)) (6)

r(k + 1) = r(k) + v(k) + 0.5a(k) (7)

a(k + 1) = λe|rg−r(k+1)|[rg − r(k + 1)] (8)

v(k + 1) = v(k) + 0.5[a(k) + a(k + 1)] (9)

where r(k), v(k) and a(k + 1) are the position, velocity and acceleration of the worst
individual. rg is the position of the global optimal. r(k + 1), v(k + 1) and a(k + 1) are
the position, velocity and acceleration of the updated individual.

The advantage of this improved variant of SFLA is that the local depth searching can be
enhanced by the randomization character. The balance between the population diversity
and the searching efficiency brings reliable algorithm convergence.

5. The Joint Optimization of Gaussian Mixture Model. In this section we apply
the SFLA based method to the parameter optimization in Gaussian mixture model. The
details of the optimization algorithm are shown in Algorithm 1.

Algorithm 1 Parameter Optimization based on SFLA

Require: L-fold cross-validation fold number L, training dataset Φ
Ensure: EM parameters ϵ and Γ; Feature space parameters m and c; GMM mixture

parameter M .
1: Initialize the individual frogs in SFLA: r0 = [m,M, ϵ, Γ, c1, c2, . . . , cn].
2: for all q = 1, . . . , Q do
3: Search the global optimal ropt

q .
4: Update the worst individual rq+1 according to Equation (6) to Equation (9).
5: Estimate the Gaussian parameters µi, Σi and ωi in EM algorithm.
6: Update the fitness function f q.
7: Terminate when the stopping criteria is met: f q+1 < θ, where θ is the threshold for

SFLA.
8: end for

The notations of the parameters in our optimization framework are listed as follows:
the number of the original feature dimensions is denoted as n; the number of the selected
feature dimensions is denoted as m; the importance evaluation of each dimension is de-
noted as ck, where k is the index of feature dimension; the number of Gaussian members
is denoted as M ; the mean vector of a Gaussian member is denoted as µi, where i is the
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index of the Gaussian member and i = 0, 1, . . . , M ; the covariance matrix of a Gaussian
member is denoted as Σi, where i is the index of the Gaussian member and i = 0, 1, . . . , M ;
the weight of a Gaussian member is denoted as ωi, which satisfies

∑M
i=0 ωi = 1.

When the SFLA is applied to our optimization problem, the fitness function is designed
based on the final speaker identification error rate e, as shown in Equation (10).

f = − ln

(
1

L

L∑
l=0

el

)
(10)

where L is the number of folds in the L-fold cross validation, and l is the index of each
validation.

The individual frog position r is initialized with the following parameters:

r = [m,M, ϵ, Γ, c1, c2, . . . , cn] (11)

The selected features are determined by the ranking of the evaluation vector [c1, c2, . . .,
cn] of the feature dimensions. The Gaussian parameters, including the weights, are opti-
mized using the traditional expectation-maximization (EM) algorithm. ϵ is the threshold
in EM algorithm, and it is the stop criteria that is optimized in SFLA. Γ is the maximum
allowed iteration in EM algorithm, and it is also optimized in SFLA. In this way the
SFLA is combined with traditional EM algorithm, and it is responsible for searching for
the global optimization of the parameters that is not estimated in the traditional EM
iterations.

6. Experimental Result. In order to verify optimization framework for the GMM based
speaker identification, we carry out a number of tests in this section.

First, the baseline speaker identification system based on MFCC features and empiri-
cally set GMM classifier is presented in Figure 3. We can see that the false acceptance
rate changes along with the false rejection rate. When the false acceptance rate reaches
the minimum value, more samples are likely to be rejected by mistake. When the false
rejection rate reaches the minimum value, more samples are likely to be accepted by
mistake.

Second, the SFLA based optimization framework in Algorithm 1 is used for improved
results. The error rates of the optimized system is shown in Figure 4. We can see
that the performance of the speaker identification is more reliable after the parameter

Figure 3. Baseline speaker identification result with false rejection rate
and false acceptance rate
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Figure 4. Improved speaker identification result with false rejection rate
and false acceptance rate

Figure 5. The convergence curve of Algorithm 1

optimization. The maximum false acceptance rate drops to 21% with zero false rejection
rate, and the maximum false rejection rate drops to 27% with zero false acceptance rate.
The SFLA algorithm may improve the feature optimization and the Gaussian mixture
number determination that cannot be achieved in the EM algorithm. The convergence
curve of the proposed optimization algorithm is depicted in Figure 5. We can see that
after 23 iterations, the algorithm converges. Further experiments show that it takes 31
iterations to converge for the basic particle swarm optimization and 36 iterations for
genetic algorithm. The error rate after each iteration is not increasing, and it may jump
out the local minimal due to its meta-heuristic property. The EM algorithm is embedded
in this optimization framework, and the overall convergence is ensured by SFLA.

7. Conclusions. In this paper we analyze the combination of SFLA and EM algorithm
in a unified optimization framework. We apply the proposed algorithm in the parameter
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optimization problem in Gaussian mixture model. The fitness function is designed based
on the error rate of the speaker identification system. The improvement over the baseline
system shows that the optimization is successful. In future work, we will further explore
the possibility of dataset optimization. The possible replacement of cross validation may
further enhance the robustness of the speaker identification system.
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