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Abstract. Two-sided assembly lines are widely applied to plants which produce large-
sized high-volume products. The zoning constraints are considered in this paper besides
the traditional constraints of two-sided assembly line balancing problem (TALBP). As-
sembly line balancing problem is NP-Hard and the additional constraints make it more
complicated. Therefore, a novel hybrid gravitational search algorithm (GSA) combined
with variable neighborhood search (VNS) is proposed to solve TALBP with zoning con-
straints. The GSA seeks the global optimal and the VNS enhances the capability of local
search. Moreover, a novel decoding scheme is designed to balance the workload between
workstations and decrease the sequence-dependent finish time of tasks. The computa-
tional results demonstrate the effectiveness of the proposed algorithm.
Keywords: Two-sided assembly line balancing, Zoning constraints, Gravitational search
algorithm, Variable neighborhood search

1. Introduction. Two-sided assembly lines are a kind of assembly lines in which tasks
are carried out on the same product in parallel at both sides of the line. Due to the
use of both sides of a two-sided assembly line, task operation directions can be classified
into three types: left side (L), right side (R) and either side (E). A two-sided assembly
line is depicted in Figure 1. Two directly facing workstations (such as workstations
1 and 2) are called a mated-station, and one of them calls the other a companion. The
sequence-dependent finish time of tasks should be taken into consideration when balancing
two-sided assembly lines [1]. The sequence-dependent finish time of tasks is caused by
the task waiting for its predecessor which has been assigned to the opposite side of the
current mated-station. Considering tasks j and h are assigned to workstation 4, and task
i which is the predecessor of task h is assigned to its companion workstation, so the idle
time between tasks j and h (shaded rectangles in Figure 1) is unavoidable.

In some real applications, zoning constraints must be imposed on the two-sided assembly
lines. Zoning constraints are divided into two types: positive zoning and negative zoning
constraints [2,3]. Positive zoning constraint indicates a set of tasks must be operated at
the same workstation and negative zoning constraint means tasks cannot be performed
at the same mated-station.

Since [4] firstly proposed the TALBP in 1993, many approaches have been reported
in the literature. However, less attention has been given to the TALBP with zoning
constraints. [2] firstly solved the TALBP with zoning constraints using an ant-colony-
based heuristic (ACO). [5] proposed the goal programming models for the TALBP with
zoning constraints and multiple objectives were considered in their models. [6] proposed
the bees algorithm (BA) to solve the TALBP without zoning constraints and with zoning
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Figure 1. A two-sided assembly line

constraints. [7] proposed the harmony search to solve the TALBP with zoning constraints
with the objective of minimizing the cycle time.

Gravitational search algorithm (GSA) is a new-born meta-heuristic algorithm which
shows great performance and global search ability in solving various nonlinear functions
[8]. As far as we know, there are no published papers using GSA to solve TALBP with
zoning constraints. Taking into consideration of its novelty, effectiveness and good perfor-
mance, we try to avoid its shortcoming of being trapped into local optimal and adjust it
to solve TALBP effectively in this paper. Hence, a novel hybrid GSA is proposed to solve
TALBP with zoning constraints for the objective of minimizing the number of mated-
stations and the number of stations. In the hybrid GSA, variable neighborhood search
(VNS) is integrated into GSA so as to enhance the local search ability of the standard
GSA. What is more, a new decoding scheme based on task selection rule and side selec-
tion rule is proposed to avoid the sequence-dependent finish time of tasks and balance the
workload between workstations. The rest of this paper is organized as follows. Section 2
illustrates the hybrid GSA and its application to solving TALBP with zoning constraints
in detail. Section 3 gives the computational results. Some conclusions are given in the
last section.

2. The Proposed Algorithm for TALBP with Zoning Constraints. GSA is a
newly developed stochastic population based search algorithm motivated by the law of
gravity and mass interactions [8]. In GSA, agents attract each other by gravitational
force which causes a global movement of all agents toward heavier masses. Each agent
represents a solution and the heavier one corresponds to a better solution. By lapse
of time, the agents will be attracted by the heaviest mass which represents an optimal
solution in the search space. In order to enhance the local search ability of GSA, VNS
is combined with GSA to improve its performance. The proposed hybrid GSA has five
phases including initialization, fitness evaluation, calculation of the total force exerted on
each agent, updating agents’ acceleration, velocity and position and improving each agent
using VNS.

2.1. Encoding scheme and initialization. Consider a system with N agents. The
position of the ith agent is defined as follows:

Ki =
(
k1

i , . . . , k
d
i , . . . , k

n
i

)
for i = 1, 2 . . . , N (1)

where kd
i represents the position of the ith agent in the dth dimension and n is the

dimension of the search space.
GSA is a continuous algorithm in nature, and the standard encoding scheme of GSA

cannot be applied directly to TALBP. So in order to qualify GSA to solve the TALBP,
random-keys method [9] is used to represent task sequence. Take the TALBP with 12
tasks as an example. We randomly generate 12 floating-point numbers between 0 and 1,
and the position with lower value should be assigned earlier in the task sequence.

2.2. Decoding to get a feasible solution. The task sequence obtained by random-
keys method is not a feasible solution. So the decoding process is designed to get a
feasible solution. Compared with traditional TALBP, this process has to deal with zoning
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constraints and a heuristic side selection and task selection rule is developed to balance
the workload between workstations and decrease the sequence-dependent finish time of
tasks. The main idea of this process is to generate candidate tasks for both sides of the
current mated-station and then select a side and task by the side and task selection rule,
respectively. Then check whether the task belongs to the zoning constraints. If the task
satisfies the zoning constraints or the task does not belong to the zoning constraints,
assign the task to the corresponding workstation. Figure 2 is the main procedure of the
decoding scheme.

Figure 2. Main procedure of the decoding scheme

2.2.1. Side selection rule. Side selection rule is used to select the side for the current
mated-station. If both candidate task sets are not empty, choose one side which can
perform the task earlier or choose one randomly when the start times of both sides are
equal; else choose the side which has candidate tasks.

2.2.2. Task selection rule. Task selection rule is applied to choosing one task for the
selected side of the current mated-station. Firstly, we should decide whether tasks which
can be operated at the earliest possible time for the selected side of the current mated-
station exist. If the tasks exist, select a task according to the priority of tasks; if not,
select a task from the candidate task set according to the priority of tasks.

2.2.3. Adjusting tasks in final mated-station. Tasks in the final mated-station can be reas-
signed to one workstation when it satisfies the following conditions: À the total operation
time of the tasks in the final mated-station is not greater than the cycle time; Á the
directions of the tasks are L and E, R and E or E and E.

2.3. Fitness function. After decoding we can get a solution and calculate its fitness.
Since two objectives are involved in this paper: minimizing the number of mated-stations
and the number of workstations simultaneously, we use the linear weighting method to
combine the two objectives into one

fiti(t) = β × NS + γ × NM (2)
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Given the condition that two different solutions have the same number of workstations
and mated-stations, one may be better balanced than the other. So when two solutions
with the same fitness are obtained, Equation (3) is utilized to distinguish these two so-
lutions. The solution with smaller SI is selected since it has a smaller difference among
workstations.

SIi(t) =

√√√√ NS∑
k=1

(CT − Sk)

/
NS (3)

where NS, NM , CT and Sk are the number of workstations, mated-stations, cycle time
and workload of workstation k, respectively. β and γ are the weighted coefficients of the
number of workstations and mated-stations. In this study, β and γ are set as equal to 1.0
and 2.0, respectively.

2.4. Calculation of the total force. The force between two agents is directly pro-
portional to the product of their masses and inversely proportional to the square of the
distance between them. At a specific iteration t, total force exerted on agent i in d
dimension is defined by:

F d
i (t) = G(t) × Mi(t)

N∑
j=1,j ̸=i

randj ×
Mj(t)

Rij(t) + ξ

(
kd

j (t) − kd
i (t)

)
(4)

where Rij(t) is the Euclidian distance (Rij(t) = ∥ki(t) − kj(t)∥2) between agents i and
j, ξ is a small constant, G(t) is the gravitational constant at iteration t, and randj is a
random number in the interval [0, 1]. Mi(t) and Mj(t) are the masses of agent i and j.

The mass of each agent is computed according to the relative efficiency of the fitness
function which is as follows:

Mi(t) =
fiti(t) − worst(t)

N∑
j=1

(fitj(t) − worst(t))

(5)

where fiti(t) represents the fitness value of the agent i at t, and worst(t) is the worst
fitness of all agents.

The gravitational constant G is initialized at the beginning and will be decreased with
the iteration to control the search accuracy.

G(t) = G0 × exp

(
−α × t

T

)
(6)

where G0 is the initial gravitational constant, α is a control constant, t is the current
iteration and T is the max iteration number.

2.5. Updating acceleration, velocity and position. All agents move along the di-
rection of the total force based on the velocity and acceleration. The acceleration of the
agent i at iteration t in the dth dimension is calculated using Equation (7):

αd
i (t) =

F d
i (t)

Mi(t)
(7)

And then the next velocity and its next position are calculated as Equations (8) and (9):

V d
i (t + 1) = randi × V d

i (t) + αd
i (t) (8)

kd
i (t + 1) = kd

i (t) + V d
i (t + 1) (9)



ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.7, NO.12, 2016 2637

2.6. Improving agents by VNS. VNS is a meta-heuristic algorithm which uses more
than one neighborhood structure during the search process [10]. When a systematic
switch from one type of neighborhood search structure (NSS) is performed, it has more
possibilities to find better solutions. In this paper four types of different NSSs are designed
to produce new neighborhood solutions. Four neighborhoods N1(s), N2(s), N3(s) and
N4(s) are characterized as follows:

1) N1(s) (swap): Select two tasks i1 and i2 (i1 ̸= i2) randomly and then swap tasks i1
and i2.

2) N2(s) (multi swap): Repeat the first NSS twice.
3) N3(s) (backward insert): Select two tasks i1 and i2 randomly and then insert i1 to the

back of i2 (Assume that i1 is before i2 in the sequence).
4) N4(s) (forward insert): Select two tasks i1 and i2 randomly and then insert i2 to the

fiont of i1 (Assume that i1 is before i2 in the sequence).

Among the four NSSs, the first NSS is done first when the VNS is carried out. If no
improvement is made, the next NSS is utilized, and when a better solution is achieved,
the first NSS is used again. Figure 3 is the pseudo code of the proposed VNS.

Figure 3. Pseudo code for the VNS

2.7. Main body of the hybrid GSA. The main body of the hybrid GSA is described
in Figure 4. VNS is combined with the GSA so as to improve the local search ability of
GSA and to strike a balance between the diversification and the intensification.

3. Experimental Design and Results. The proposed hybrid GSA for TALBP with
zoning constraints is programmed in Visual C++2010 and runs on Intel (R) Core5 (TM)
CPU 3.1 GHz, 8 GB memory PC with Microsoft Windows7. In order to demonstrate the
effectiveness and efficiency of the proposed hybrid algorithms, three large-sized problems
P65, P148, P205 are solved. P148 is taken from [4], and P65 and P205 are taken from [1].
In P148, the operation times of tasks 79 and 108 are changed from 281 to 111 and from
383 to 43 according to [1]. The zoning constraints of all these problems are taken from [2].
In this section, we first calibrate the proposed decoding scheme with four heuristic based
decoding methods. And then the performance of the proposed hybrid GSA is compared
with those of ACO [2], BA [6], and GSA.

3.1. Comparison of different decoding schemes. The proposed decoding scheme
uses the task selection rule that selects the task which can be operated at the earliest
possible time (EBT). There are other heuristic task selection rules which can be used
in the proposed decoding scheme including: (1) Max-IFOL: select the task having the
maximum number of immediate follower tasks; (2) MAX-TTST: select the task having
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Figure 4. Main body of the hybrid GSA

maximum total processing time of successor tasks; (3) Max-TFOL: select the task having
the maximum total number of follower tasks; (4) Max-RPW: select the task having max-
imum ranked positional weight, where the ranked positional weight of a task is the sum
of the processing time of the task and all its follower tasks. So these four task selection
rules can be applied to selecting a task and hence generate four new decoding schemes.

For the evaluation of these decoding schemes, P148 is selected to test the performance
of these five decoding schemes. 15 different instances are randomly generated and each
instance is run 10 times. The stopping criterion is fixed to a maximum CPU time. The
average relative percentage deviation (RPD) for each instance is utilized for comparison
and RPD can be calculated using the following expression.

Relative Percentage Deviation (RPD) =
Somesol − Best

Best
× 100 (10)

where Somesol is the solution obtained by one running and Best is the optimal solution
obtained by any of these decoding schemes. Analysis of variance (ANOVA) is used to
check whether these five decoding schemes are different in the RPD value. The response
variable is the RPD value of each decoding scheme. The means plot for the single factor
is depicted in Figure 5. From the results we can see that our proposed decoding scheme
outperforms the other four methods.

3.2. Computational results and comparisons. In this subsection, three large-sized
test problems with various cycle times are examined. The stopping criterion is set as
n×n×10 ms. The parameters G0, α and population size are set as 10, 1, 50 respectively,
according to the preliminary parameter adjustment experiments.

The computational results are summarized in Table 1. Two evaluation criteria i.e. the
number of workstations (NS) and the number of mated-stations (NM) are used in this
experiment. Maximum, minimum and average numbers of workstations and the best
number of mated-stations among 10 times are reported in Table 1.

As can be seen in Table 1, GSA and hybrid GSA find all the best solutions. The
bold characters indicate the NS values which are better than ACO and BA. GSA and
the proposed hybrid GSA obtained the best solutions for all the 22 large-sized instances.
Among the 22 large-sized instances in Table 1, the proposed hybrid GSA outperforms 16
cases over ACO and 11 cases over BA, respectively. For the largest test problem P205, the
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Figure 5. Means plot for decoding

Table 1. Computational results

Problem
Cycle

LB ACO BA
GSA hybrid GSA

Time
NS

NM
NS

NM
Min Avg Max Min Avg Max

P65

326 16 17 17 17 17.3 18 9 17 17 17 9
381 14 15 14 14 14.8 15 7 14 14 14 7
435 12 13 13 13 13 13 7 13 13 13 7
490 11 12 11 11 11 11 6 11 11 11 6
544 10 10 10 10 10 10 5 10 10 10 5

P148

204 26 26 26 26 26.2 27 13 26 26 26 13
255 21 21 21 21 21 21 11 21 21 21 11
306 17 18 18 17 17.8 18 9 17 17.6 18 9
357 15 18 15 15 15 15 8 15 15 15 8
408 13 15 14 13 13 13 7 13 13 13 7
459 12 13 12 12 12 12 6 12 12 12 6
510 11 11 11 11 11 11 6 11 11 11 6

P205

1133 21 25 23 23 23 23 12 23 23 23 12
1322 18 22 21 20 20 20 10 19 19.2 20 10
1510 16 19 18 17 17.9 18 9 17 17.1 18 9
1699 14 18 17 15 15.9 16 8 15 15.6 16 8
1888 13 16 16 14 14.4 15 7 14 14 14 7
2077 12 16 14 14 14 14 7 13 13.2 14 7
2266 11 14 14 13 13 13 7 12 12.4 13 6
2454 10 14 14 12 12 12 6 11 11.8 12 6
2643 9 13 13 11 11.7 12 6 11 11 11 6
2832 9 12 12 11 11 11 6 10 10.3 11 5

proposed algorithm obtained 10 of 11 better solutions than ACO and BA. The proposed
hybrid GSA gets five new better solutions than GSA. The average number of workstations
obtained by the proposed algorithm is fewer than that of GSA which shows good stability.
The majority differences between ACO or BA and the results by hybrid GSA are three,
such as P205 (CT = 2454), which is a great improvement. The proposed hybrid GSA
obtained the lower bounds (LB) values of workstations for 10 of the 22 test instances.
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In summary, the proposed hybrid GSA demonstrates that it is efficient and effective for
solving TALBP with zoning constraints.

4. Conclusions. In this paper, a new hybrid GSA is proposed to solve TALBP with
zoning constraints which aims to minimize the number of mated-stations and the number
of workstations. The random-keys method is applied to making the GSA for TALBP. And
a decoding scheme which consists of side selection and task selection rules is proposed to
get a feasible solution. The workload between workstations can be balanced through the
side selection rule and sequence-dependent finish time of tasks can be reduced by using
task selection rule. And the performance of the proposed decoding scheme is demonstrated
by comparison with the other four decoding schemes through ANOVA. Moreover, VNS is
employed to improve solutions generated by GSA so as to avoid being trapped into local
optimal. The computational results showed that the hybrid GSA can solve the problem
effectively especially for large-sized problems. In the future, the proposed algorithm can be
applied to solving other assembly line balancing problems such as mixed-model assembly
balancing problem and parallel assembly line balancing problem.
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[6] L. Özbakır and P. Tapkan, Bee colony intelligence in zone constrained two-sided assembly line
balancing problem, Expert Systems with Applications, vol.38, no.9, pp.11947-11957, 2011.

[7] H. D. Purnomo and H. M. Wee, Maximizing production rate and workload balancing in a two-sided
assembly line using harmony search, Computers & Industrial Engineering, vol.76, pp.222-230, 2014.

[8] E. Rashedi, H. Nezamabadi-Pour and S. Saryazdi, GSA: A gravitational search algorithm, Inform
Sciences, vol.179, no.13, pp.2232-2248, 2009.

[9] J. C. Bean, Genetics and random keys for sequencing and optimization, ORSA Journal on Comput-
ing, vol.6, no.2, pp.154-160, 1994.
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