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ABSTRACT. Traffic assignment is a fundamental problem in the field of transportation
science. In the past decades, many algorithms have been proposed to find the optimal
solution. However, the travel demand is not deterministic. Instead, it is varying day by
day. In this paper, we investigate the traffic assignment problem with the fuzzy travel de-
mand. By representing the travel demand using the triangular fuzzy numbers, we propose
a generalized Physarum-based approach to approach the optimal solution to the traffic
assignment problem. A numerical example is used to demonstrate the performance of the
proposed algorithm.
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1. Introduction. Traffic networks are playing more and more significant roles in our
daily life in the sense that they ship massive products from the manufacturers to the
demand markets and conveys millions of persons between home and work place as well.
In the past decades, traffic networks have received increasing attention. Seminal work has
been done by various researchers, for example, Wardrop built two individual principles to
depict the two equilibrium statuses of the traffic networks: user equilibrium (UE) flows,
and system optimal (SO) flows [1].

In terms of user equilibrium, it is based on the fact that humans choose a route so
as to minimize his/her travel time and on the assumption that such a behaviour on the
individual level creates an equilibrium at the system (or network) level. In contrast, it
implies that each user behaves cooperatively in choosing his own route to ensure the most
efficient use of the whole system. Among them, due to the importance of user equilibrium
to depict the pattern of user behavior and the flow distribution in the equilibrate traffic
networks, it draws lots of attention and many algorithms have been proposed to solve this
problem. For instance, Fukushima put forward an improved Frank-Wolfe (FW) algorithm
for the traffic assignment problem [2]. Lately, Mitradjieva and Lindberg presented the
Conjugate Frank-Wolfe algorithm and Bi-Conjugate Frank-Wolfe by improving the FW
search direction [3]. In recent years, many bush-based algorithms are emerging. For
instance, Dial proposed Algorithm B by shifting the traffic flow from the longest used
path to the shortest path within a given bush [4].

However, the travel demand is affected by many uncertain factors, such as seasons,
and holidays. For example, in China, in the national day, the traffic volume in many
attractions is much larger than usual. In USA, at the holiday of Thanksgiving, millions of
persons are going back to their hometowns to celebrate the holiday, which leads to a totally
different traffic pattern from usual. As a result, it is not realistic to represent the traffic
demand in a deterministic way. Instead, a research on the traffic assignment problem,
uncertain environment, is much more meaningful. Seminal work has been presented by
many researchers [5, 6, 7]. However, some of the proposed models are too complicated to
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be implemented in many large networks. In the past decades, fuzzy numbers are developing
very fast and have been widely used to solve many practical problems, such as supplier
selection [8], path finding [9], and risk analysis [10]. They show great potential to be
applied into real-world applications.

Recently, Physarum has been proved to be capable of solving the user equilibrium prob-
lem [11, 12]. Liu et al. [13] employed the Physarum model to solve the traffic assignment
problem in the presence of uncertainty, in which they decomposed the fuzzy numbers into
three individual parts. However, this in turn increases the size of solving linear equations.
Given a network with N nodes, they enlarge the problem with 3 % N linear equations,
which might hinder its application in real-world scenarios. In this paper, we are mo-
tivated to propose another generalized Physarum-based approach to address the traffic
assignment problem under uncertain environment, in which we transform the fuzzy num-
bers into crisp numbers. By doing this, on one hand, we capture the uncertainty in the
traffic demand. On the other hand, we retain the same time complexity as the original
Physarum model, which makes it different from the existing methods.

The remainder of this paper is structured as follows. In Section 2, we introduce the
basic theories, including the mathematical model of Physarum and traffic assignment
problem. In Section 3, we present the proposed methodology in detail. In Section 4, we
use several numerical examples to demonstrate the efficiency. In Section 5, we summarize
this paper with conclusions.

2. Preliminaries. In this section, the basic theories, including the mathematical model
of Physarum and the traffic assignment problem, are briefly introduced.

2.1. Mathematical model of Physarum. According to the mathematical model built
by Tero et al. [14], it can be described as follows. Each segment in the diagram represents
a section of tube. Two special nodes, which are also called food source nodes, are named
N; and N, and the other nodes are denoted as N3, N4, N5, and so on. The section of tube
between NN; and Nj is denoted as M;;. If several tubes connect the same pair of nodes,
intermediate nodes will be placed in the center of the tubes to guarantee the uniqueness
of the connecting segments. The variable @);; is used to express the flux through tube M;;
from N; to N;. Assume the flow along the tube as an approximately poiseuille flow, the
flux @;; can be expressed as:
Qs =720~ p)) )
ij

where p; is the pressure at the node Nj;, p; is the pressure at the node N;, D;; is the
conductivity of the edge M;;, and L;; is the length of the edge M;;.

Assume zero capacity at each node; hence by considering the conservation law of sol
the following equation can be obtained:

SQu=0 (j#1.2) (2)

For the source node N; and the sink node N,, the following two equations hold

ZQi1+[0:0 (3)

ZQz‘2—10=0 (4)

where I is the flux flowing from the source node. It can be seen that I is a constant
value in this model.

In order to describe such an adaptation of tubular thickness, we assume that the con-
ductivity D;; changes over time according to the flux @);;. The following equation for the
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evolution of D;;(t) can be used

d
dt
where 7 is a decay rate of the tube. It can be obtained that the equation implies that the
conductivity ends to vanish if there is no flux along the edge, while it is enhanced by the

flux. The f is monotonically increasing continuous function satisfying f(0) = 0.

Then the network of Poisson equation for the pressure can be obtained from Equations
(1)-(4) as follows:

Dz‘j:f(|Qz‘j|)—7“Dz‘j (5)

D.. —1 for j =1,
> Trmi-p) = +1 forj=2, (6)

P 0  otherwise

By setting p, = 0 as a basic pressure level, all p; can be determined by solving Equation
(6) and @;; can also be obtained.

In this paper, f(Q) = |Q| is used. With the flux calculated, the conductivity can be
derived, where Equation (7) is used instead of Equation (5), adopting the functional form

f(Q) =lel.
Dy - D
ot

where dt is a time mesh size and the upper index n indicates a time step.

= Q| - Dij! (7)

2.2. Traffic assignment problem. Consider a network G(N, A), where N and A are
sets of nodes and links, respectively. Let O and D be subsets of N, for which travel
demand ¢* is generated from origin s € O to destination ¢t € D. Suppose f;’t represents
the path flow originated at node s and destined to node t, then we have:

Y fl=¢", V¥se€O, teD (8)

pePSi

where P# is a set of cycle free paths connecting s to ¢t. All path flows must be non-negative
to guarantee a meaningful solution:

>0, vrepP" se€0O, teD 9)

Let f;; denote the flow along the link (7, 7). Then the total flow on the link (z, j) is the
sum of all paths that includes the link:

Fa=D_> "> flel, V(i.j)eA (10)

s€0 teD repst

where 07;;
o5 = 0.

All nodes, except the supply nodes and the demand nodes, must satisfy the flow con-
servation law:

= 1 if the link (7,j) is a segment of path r connecting s to t. Otherwise,

> fi= > fin Vi€ N\{0,D} (11)

(i,7)€A (j,k)EA

In a transportation network, each user non-cooperatively seeks to minimize his own cost
by taking the path of least perceived cost from his origin to his destination. The network
is said to be at equilibrium if nobody can reduce his cost by shifting to other alternative
routes. Suppose the cost of shipping f;; units along link (¢, 7) is g;; (fi;). The cost function
gij (fi;) is a monotonically increasing function of the total flow passing through the link
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(,7). The traffic equilibrium assignment problem can be formulated as:
fij
Min Z /gij (fis)df
(i,j)EA 0

st Sy=)0 > [l V(i) eA

s€0 teD repst

Y fi= Y fm Vi€ N\{0,D} (12)

(i,7)€A (j,k)eA
Y fil=q", Vs€0, teD
pepst

f;tZO, Vpe P, secO, teD
fij; >0, V(i,j)€A

3. Development of the Proposed Algorithm. The proposed method consists of three
steps. First of all, we use the triangular fuzzy numbers (TFN) to represent the fuzzy travel
demand. Secondly, the fuzzy travel demand is converted into a crisp one. At last, with
the help of Physarum, we are able to find the solution to the traffic assignment problem.

Step 1: Expressing the uncertain travel demand using triangular fuzzy num-
bers. In this paper, the nondeterministic travel demand between the OD pair (7, ) is
expressed by triangular fuzzy numbers in the form of R;;(riji, 7ijm, Tijr)-

Step 2: Transforming TFN into crisp number. There are various ways to trans-
form TEN into a crisp number. In this paper, we perform the transformation according
to the following method:

d (2,]) _ Tijl + 4T’gm + Tijr

In this way, we transform the fuzzy travel demand in a canonical representation.

Step 3: Apply Physarum-based solution to the fuzzy traffic assignment
problem. Since Physarum is able to adapt to the update of the link cost, we can make
full use of this mechanism to approach the solution to the traffic assignment problem.
The specific algorithm is illustrated in Algorithm 1.

There are several alternate conditions to determine the termination of the Physarum
algorithm, for example, arriving the maximum iterations, and the difference between two
consecutive iterations is less than a predefined threshold. In our paper, when the sum of
the absolute difference in two consecutive iterations is less than 0.01, the program ends.

(13)

4. Applications. The network shown in Figure 1 is derived from [15]. In this network,
it has 13 nodes, 19 links, and 4 OD pairs. The origin-destination demands, in vehicles
per hour, are ¢4? = [520, 660, 740], ¢*3 = [400, 480, 500], ¢*? = [300, 400, 500], and ¢*3 =
[500, 520, 630]. The link characteristics are shown in Table 1.

The following function developed by the US Bureau of Public Roads (BPR) is used to
represent the cost on each link [16]:

4
p— <1 + 0.15(”—”) ) (14)
Cij

where g;;, o, vij, ¢;; denote the travel time (cost), free-flow travel time, flow and capacity
on link (7, j), respectively.

With the proposed method, we need to convert the fuzzy travel demand into a crisp
number. For example, with respect to ¢"2?, we have w = 650. In a similar way,
we can apply the same operation to the other fuzzy travel demand. Afterwards, based
on Algorithm 1, we can find the optimal solution to the network shown in Figure 1. In
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Algorithm 1 Physarum Solver in Traffic Network Equilibrium Assignment Problem
(L,n,0,D)

1: // n is the size of the network;
2: // O, D are the set of origin nodes and destination nodes;
3: // L;j is the length of the link connecting node ¢ with node j;
4: // Transform the fuzzy travel demand into a crisp one
Cij < (0,1] (Vi,j =1,2,...,n);
Qij — O (VZ,] = 1,2,...,71);
pi—0 M =12,...,n);
5: repeat
6:  Calculate the pressure associated with each node according to Equation (6)
D, —1 for j =1,
ZL“(pi—pj): +1 for j =2,
i Y 0  otherwise

7 Qi — Cij X (pi —pj)/Lij // Using Equation (1);
8:  Cy «— Q;j + Ci; // Using Equation (7)
9: Update the cost on each link;

10: fori=1:ndo

11: for j=1:ndo

12: Li_j = —Lij 9 (QU)

13: end for
14: end for
15: until a termination criterion is met

Destination

Destination

FIGURE 1. A transportation network with 13 nodes

the optimal solution, all the used paths have the same cost. Specifically, we can calculate
the cost on each link, e.g., the cost on link 1 is 7 % (1 + 0.15 % (685.15/300)%) = 35.5658.
Thus, the cost of the path 1 — 12 — 8 — 2 is 77.5739. Similarly, the cost of path
1—-5—-6—-7—8— 2isalso 77.5739. In addition, we also implement Frank-Wolfe
algorithm to solve this problem, and the results are consistent.

As can be noted, all the used paths having the same origin and destination have the
same cost. In other words, nobody can reduce his/her travel cost by switching to other
paths, which is the corresponding user equilibrium state.
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TABLE 1. Link characteristics for Nguyen-Dupuis’s 13-node network shown
in Figure 1

Free-flow travel time Capacity Link Free-flow travel time Capacity

Link

(min/trip) (veh/h) (min/trip) (veh/h)

1 7 300 11 9 500
2 9 200 12 10 550
3 9 200 13 9 200
4 12 200 14 6 400
5 3 350 15 9 300
6 9 400 16 8 300
7 5 500 17 7 200
8 13 250 18 14 300
9 5 250 19 11 200
10 9 300

TABLE 2. The optimal solution for Nguyen-Dupuis’s 13-node network
shown in Figure 1

Link Optimal flow (veh/h) Link Optimal flow (veh/h)

1 685.15 11 753.32
2 483.84 12 545.34
3 474.08 13 365.26
4 460.92 14 045.34
3 709.55 15 296.68
6 449.68 16 639.74
7 719.50 17 9.95
8 0 18 424.89
9 328.42 19 365.26
10 391.08

5. Conclusions. In this paper, we investigate the traffic assignment problem under un-
certain environment. Specifically speaking, the travel demand is imprecise in our paper
and we represent its uncertainty using the triangular fuzzy numbers. By converting the
TFN into a crisp number, we apply Physarum algorithm to approach the optimal traffic
distribution across the network. We validate its performance through a classical trans-
portation network with 13 nodes. The result demonstrates that our algorithm is capable
of finding the optimal solution.

Future researches can be carried out in two different directions. On one hand, we can
try to apply the proposed model into the traffic assignment problem with multiple user
classes. On the other hand, how to reduce the time spent on solving the linear equations
shown in Equation (6) is worthwhile to investigate.
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