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Abstract. This work focuses on the spectrum sensing for the case of non-identical
noise levels among antennas in cognitive radio systems. In this scenario, conventional
eigenvalue-based detectors (EBDs), including the maximum-minimum eigenvalue detec-
tion (MMED) and the maximum eigenvalue detection (MED), have difficulty in setting
the thresholds for a constant false alarm rate (CFAR), and their performances may de-
grade seriously. This work proposes a robust eigenvalue-based detector (REBD) to deal
with the non-identical noise levels. It is shown that the proposed detector is robust to the
non-identity of noise levels and moreover, its threshold is tractable for a CFAR. Finally,
the numerical simulations validate the proposed detector.
Keywords: Cognitive radio, Spectrum sensing, Non-identical noise levels, Eigenvalue
detection

1. Introduction. Reliable spectrum sensing is a crucial issue for cognitive radio (CR)
not causing unacceptable interference to primary users (PUs) [1]. Here, the reliability
is twofold, i.e., the decision threshold of a spectrum sensing detector for any false alarm
probability (Pf ) is tractable, and the detector has high detection probability (Pd).

Several spectrum sensing detectors, such as energy detection (ED) [2, 3, 4, 5], matched
filter detection [6], cyclostationary detection [7] and eigenvalue-based detection [8, 9, 10],
have been proposed. Each spectrum sensing detector has its advantages and disadvan-
tages. For instance, matched filter detection requires the prior information of transmit-
ted waveforms of primary users. The cyclostationary detection requires the knowledge of
cyclic frequencies of primary signals. ED has been extensively studied due to its simplicity
operation and no requirement of prior knowledge of primary signals. However, it exhibits
signal-to-noise radio (SNR) wall phenomenon due to noise uncertainty, which degrades its
performance significantly [11, 12]. To overcome the noise uncertainty, eigenvalue-based
detectors, such as the maximum-minimum eigenvalue detection (MMED) and the max-
imum eigenvalue detection (MED), have been proposed. However, these detectors work
only under the case of identical noise levels among antennas. In practice, the noise levels
among antennas may not be identical after some array calibrations [13]. In this scenario,
these eigenvalue-based detectors have difficulty in setting the decision thresholds for a
constant false alarm rate (CFAR). Thus, their performances may degrade seriously.

This work proposes a robust eigenvalue-based detection (REBD) which exploits all the
eigenvalues and the elements of covariance matrices. The ratio between the product of the
diagonal elements and the eigenvalues is considered as part of the test-statistic. Under the
noise only case, the statistical covariance matrix of received signal is a diagonal matrix
which means the eigenvalues are equal to the diagonal elements. This implies that the
non-identity of noise levels has no effect on the threshold for the test-statistic, i.e., the
threshold is tractable. With the presence of primary signals, the statistical covariance
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matrix is no longer a diagonal matrix. Hence, the product of diagonal elements is bigger
than that of eigenvalues. This property is used to distinguish whether primary users exist
or not.

The rest of the paper is organized as follows. Section 2 states the signal model at a
secondary user. In Section 3 proposes a robust eigenvalue-based detection. The numerical
simulations in Section 4 validate the proposed detector. Finally, some conclusions are
drawn in Section 5.
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Figure 1. Schematic diagram of spectrum sensing in CR

2. System Model. Consider a secondary user equipped with M antennas. The schema-
tic diagram of spectrum sensing in CR is given in Figure 1. Let xi(k) denote the discrete-
time signal received from the ith antenna, and the received signal vector can be described
as x(k) = [x1(k), · · · , xM(k)]T , (k = 1, · · · , K), where the superscript (·)T represents the
transpose operator. With the binary hypotheses, the received signal x(k) is given by

x(k) =

{
n(k), H0

s(k) + n(k), H1
(1)

where H0 denotes the absence of PU, and H1 stands for the presence of PU; n(k) =

[n1(k), · · · , nM(k)]T denotes an independent and identically distributed (i.i.d.) additive
white circularly symmetric complex Gaussian noise vector with mean zero and covari-
ance Rn = diag (σ2

1, · · · , σ2
M). Here diag (σ2

1, · · · , σ2
M) denotes a diagonal matrix with

σ2
1, · · · , σ2

M being its diagonal elements. s(k) = [s1(k), · · · , sM(k)]T with si(k) represent-
ing the primary signal at the ith antenna. It is assumed that the primary signal vector has
mean zero and covariance Rs = E

[
s(k)sH(k)

]
, where E[·] denotes expectation operator,

and Rs is not a diagonal matrix because of antennas correlation. Assuming that the PU
signal s(k) and noise n(k) are independent, we have the statistical covariance matrix of
the received signal as

Rx|H0 = E
[
x(k)xH(k)|H0

]
= E

[
n(k)nH(k)

]
= Rn

(2)

and

Rx|H1 = E
[
x(k)xH(k)|H1

]
= E

[
s(k)sH(k)

]
+ E

[
n(k)nH(k)

]
= Rs + Rn

(3)
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under H0 and H1, respectively.
The test-statistic of MMED and MED are given by

TMMED =
λmax

λmin

(4)

and

TMED =
λmax

1

M

M∑
i=1

Rx(i, i)

(5)

where λmax and λmin are the maximum and minimum eigenvalues of Rx, respectively. If the
noise levels from antennas are equal to each other, it can be easily verified that TMMED =
TMED = 1 under H0 hypothesis. Hence, the threshold level for any Pf is traceable with
finite samples. However, when the noise levels are not equal to each other, both TMMED

and TMED are untraceable for having no prior knowledge of the noise levels. Therefore,
the threshold become untraceable with finite samples.

3. Robust Eigenvalue-Based Detection. In order to overcome the previously men-
tioned problem, all the eigenvalues and the diagonal elements of Rx are exploited in the
proposed REBD. The test-statistic of the REBD is given by

TREBD =

M∑
i̸=j; i,j=1

Rx(i, j)

M∑
i=1

Rx(i, i)

+

M∏
i=1

Rx(i, i)

M∏
i=1

λi

(6)

where λi is the eigenvalue of Rx. Further, the test-statistic can be rewritten as

TREBD =

M∑
i̸=j; i,j=1

Rx(i, j)

M∑
i=1

Rx(i, i)

+

M∏
i=1

Rx(i, i)

det(Rx)
(7)

where det(Rx) denotes the determinant of Rx.
Under H0 hypothesis, even when the noise levels are non-identical, it can be obtained

that

TREBD = 1 (8)

In contrast, under H1 hypothesis we have

TREBD > 1 (9)

This property can be used to distinguish whether primary users exist or not. The proposed
detector can be implemented by

TREBD

H0

<
>
H1

λREBD (10)

where λREBD represents the decision threshold of the proposed REBD. In our detector,
it will be verified in the next section that non-identity of noise levels has no effect on
the decision threshold. Hence, the decision threshold λREBD can be obtained offline by
Monte Carlo simulations using identical or any non-identical noise levels. Table 1 gives
the algorithm of setting the decision threshold.
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Table 1. Setting decision threshold through Monte Carlo simulations

Monte Carlo Simulations Procedure
Initialization:

M , K, Pf , MC where MC represents the number of Monte Carlo simulations.
Monte Carlo Trials:
1: for mc = 1 : MC
2: Generate noise samples with identical or any non-identical noise levels;
3: Compute the sample covariance matrix Rx using Equation (2);
4: Obtain the test-statistic TREBD using Equation (7) from the mcth trials;
5: end
6: The decision threshold λREBD is set to be equal to the (Pf ∗ MC)th value

from MC TREBDs of descending order.

4. Simulation Results. In this section, the numerical results are presented to validate
the proposed spectrum sensing detector. Suppose that M = 4 antennas are deployed
in a secondary user. Let the sample number be K = 100. In the first experiment, we
investigate the threshold for given Pf = 0.1. The noise levels are assumed to be uniform
distributions in the range [−0.7, 0.7]. For every group of the noise levels, the threshold is
obtained via Monte Carlo simulations with 105 independent trials.

With 100 groups of randomly generated noise levels, the thresholds for the REBD,
MMED and MED are shown in Figure 2. It demonstrates that the threshold for the
REBD maintains almost unchanged for keeping Pf = 0.1. However, the thresholds for
MMED and MED vary violently. The threshold of MMED varies randomly in the range
from 1.9 to 2.1, and it is difficult to obtain a threshold for achieving a given Pf . It implies
that the threshold is tractable for REBD, but untractable for MMED and MED under
the scenario of non-identical noise levels. In addition, the blue curve of REBD in Figure
2 is very close to 1, which validated the theoretical analysis in previous section.

Two groups of noise levels are used to obtain the receiver operating characteristic (ROC)
curves. Figure 3 shows the ROC curves for REBD, MMED and MED with SNR being −5
dB. In Figure 3, the terms G1 and G2 denote the first and second group of noise levels.
It is observed that two red ROC curves of REBD are well matched, but the black and
blue curves are not. It shows that REBD is more robust against non-identity of noise
levels than MMED and MED. This is because the threshold of the proposed detector is
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Figure 2. Thresholds for Pf = 0.1 with 100 groups of randomly generated
noise levels
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Figure 3. ROC curves of two groups of randomly generated noise levels.
The terms G1 and G2 denote the first and second group of noise levels.

independent of the distribution of noise levels, while MMED and MED depend on the
distribution of noise levels. Furthermore, it can also be seen that REBD outperforms
MMED and MED. For Pf = 0.1, REBD has a detection probability over 0.95, while the
detection probability of MED is below 0.8, and that of MMED is smaller than 0.7.

5. Conclusions. In this letter, we studied the case of non-identical noise levels among
antennas CR systems, which lead to the thresholds of MMED and MED untraceable for a
CFAR. By exploiting all the eigenvalues and the diagonal elements of covariance matrices,
we proposed a robust eigenvalue-based detection. Numerical results have demonstrated
that the proposed REBD is robust to the non-identical noise levels among antennas, which
outperforms the MMED and MED. Deriving the theoretical expression for the decision
threshold of the proposed detector will be the focus of our future work.
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