
ICIC Express Letters
Part B: Applications ICIC International c⃝2016 ISSN 2185-2766
Volume 7, Number 12, December 2016 pp. 2519–2526

COMPREHENSIVE STATEMENT RANKING ALGORITHM
BASED ON SUSPICIOUSNESS AND DEPENDENCE

FOR FAULT LOCALIZATION IN SOFTWARE SYSTEM

Wanchang Jiang1,2, Jiadong Ren1 and Yuan Huang1

1College of Information Science and Engineering
Yanshan University

No. 438, Hebei Avenue, Qinhuangdao 066004, P. R. China
jwchang84@163.com; jdren@ysu.edu.cn; 757918272@qq.com

2School of Information Engineering
Northeast Dianli University

No. 169, Changchun Road, Jilin 132012, P. R. China

Received June 2016; accepted September 2016

Abstract. Fault localization of statement granularity is important for software test-
ing. In this paper, in order to solve the ineffectiveness of failed execution spectrum-based
suspiciousness metric, both failed and successful non-execution spectra are considered
as decisive factors to design a new suspiciousness computation method (short as ENS),
and then the contribution of each statement to the fault can be determined. With the
proposed concept of execution trace self-information, each expression in ENS metric is
weighted respectively to reflect the importance of each decisive factor, and then a weighted
suspiciousness computation method ENSω is proposed. With the dynamic dependence in-
formation of failed executions, a comprehensive statement ranking algorithm is designed
on the basis of suspiciousness metric for fault localization. Experiments are carried out
on the typical program in Siemens Suite for verifying better effectiveness of the methods
ENS and ENSω for fault localization than other metrics, especially ENSω. It is shown
that our comprehensive statement ranking algorithm has better performance, and fewer
statements need to be inspected until fault is found.
Keywords: Software fault localization, Comprehensive statement ranking, Suspicious-
ness metric, Dependence information

1. Introduction. Since the human factors are involved in software system development
process, it is necessary to improve and confirm software reliability. To improve software
stability and robustness of function granularity, a method is designed to measure the
importance of functions in software network [1]. Fault of statement granularity can be
located with module testing, and every unit in system could realize its expected function.
Because of the complexity of software system, software testing and debugging is high in
time-consumption with test cases [2]. Test case prioritization and selection techniques
are designed to improve the efficiency of software testing, which reduces testing cost to a
large extent [3, 4].

To effectively solve the problem with the given test cases, fault localization techniques
are proposed, which can be realized based on program spectra. Program spectra includ-
ing statement spectra are designed to obtain the statistical information of execution of
program. To assist localizing the fault in a fault program, suspiciousness metrics are
designed by using some of spectra to compute suspiciousness value for each statement
to be the fault. Since only a few test cases are failed ones, no failed execution makes
metrics of WONG1 [5], Tarantula [6], Zoltar [7] and Ochiai [8] ineffective. Furthermore,
the performance of metrics of Sokal, Hamann [6] and WONG2 [5] need to be improved,
whose decisive spectra have the same effect on the suspiciousness.

2519

2520 W. JIANG, J. REN AND Y. HUANG

The suspiciousness computation metric is not good in locating the fault for some cases
wherein a fault may be missing partial code or in a condition statement. The fault may
change the value of parameter in the statement, or the execution trace. Without coverage
information, it is difficult to locate fault only by using the suspiciousness score of each
statement. As a result, only with the program spectra, the performance of locating the
fault statement is not stable.

Therefore, a new suspiciousness computation method ENS is designed based on failed
and successful non-execution spectra. By using the proposed execution trace self-informa-
tion, a weighted suspiciousness computation method ENSω is designed based on ENS. Fur-
thermore, with the dynamic dependence information of failed executions, related state-
ments in execution can be considered together to gather information about fault, and
then a comprehensive statement ranking algorithm is presented to further improve the
performance of suspiciousness-based fault localization with given test cases.

The organization of this paper is as follows. Section 2 discusses the preliminaries.
Section 3 introduces the suspiciousness computation method ENS and the weighted sus-
piciousness computation method ENSω. Section 4 describes the comprehensive statement
ranking algorithm for fault localization. In Sections 5, the experiments are conducted on
the typical program in Siemens Suite. Section 6 concludes the work and discusses possible
directions for future work.

2. Preliminaries. In this section, concepts of fault program, test suite, program spectra
and execution trace self-information are described.

Definition 2.1. For a fault program which contains one fault, candidate statement set
containing the fault is denoted as {S1, · · · , Si, · · · , SN}, where Si is the ith statement and
N is the number of statements.

Definition 2.2. A fault program will be executed with a test suite of test cases, which
is denoted as {T1, · · · , Tj, · · · , TM}, where Tj is a test case and M is the number of test
cases. According to the execution result, test cases are divided into passed and failed ones.
Tj is a failed test case when the execution is a failed one; otherwise Tj is a passed test
case when the execution is a successful one.

Definition 2.3. Program spectra of aef(Si), aep(Si), anf(Si) and anp(Si) are defined to
extract information from execution traces of test running, short as aef, aep, anf and anp.
Failed execution spectrum aef denotes the number of failed executions covering the state-
ment Si. Failed non-execution spectrum anf denotes the number of failed executions not
covering the statement Si. And successful execution spectrum aep and successful non-
execution spectrum anp respectively denote the number of successful executions covering
and not covering statement Si.

Definition 2.4. With execution traces, the probability of failed execution covering Si is
used to compute failed execution trace self-information hef(Si) which is proposed to gather
information that statement Si is covered by the failed execution.

hef(Si) = −P (SiR) log(P (SiR)) (1)

Failed non-execution trace self-information hnf(Si), successful execution trace self-informa-
tion hep(Si) and successful non-execution trace self-information hnp(Si) can be defined
similarly.

3. Suspiciousness Computation Metrics ENS and ENSω. A new suspiciousness
metric ENS is proposed on the basis of failed execution spectrum and successful non-
execution spectrum. Furthermore, two other spectra are also utilized for constructing sus-
piciousness computation formula. By using the proposed execution trace self-information,
a weighted suspiciousness metric ENSω is designed based on ENS.

ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.7, NO.12, 2016 2521

3.1. Suspiciousness metric ENS. When a statement is executed only by the failed test
cases, the statement has a high likelihood of causing fault. In addition, if the statement
is not covered by most successful executions, the statement may be related to fault and
provide information about the fault. Thus, both failed execution spectrum and successful
non-execution spectrum are considered as the decisive factors of computing the suspi-
ciousness, and aef -based expression and anp-based expression are constructed respectively
by using some spectra. As a result, a novel suspiciousness computation method ENS is
designed, and the formula is as follows.

ENS(Si) =
aef

aef + aep + anf

+
anp

anp + aep + anf

(2)

The event of one successful execution covering a statement decreases the possibility
of the statement to be the fault, and the event of one failed execution not covering a
statement decreases the possibility. So, in the construction process of aef -based expression
and anp-based expression, the factors of failed non-execution and successful execution
spectra are also considered to get more comprehensive information about fault. Both aep

and anf are used as inverse factors to reflect the influence of aep and anf on the fault. aef

is included in the denominator to reduce the importance of aef -based expression. As a
result, the sum of aef, aep and anf is considered as the denominator of aef -based expression.
In a similar way, the sum of anp, aep and anf is used to construct anp-based expression to
balance the influence of anp.

3.2. Weighted suspiciousness computation metric ENSω. To reflect the influence
of each expression of ENS formula upon suspiciousness, a weighted suspiciousness com-
putation method ENSω is proposed based on method ENS by using execution trace self-
information.

With the proposed failed execution trace self-information hef(Si), failed non-execution
trace self-information hnf(Si) and successful execution trace self-information hep(Si) and
successful non-execution trace self-information hep(Si), two weights, abbreviated as ωef

and ωnp respectively, are presented for the aef -based expression and anp-based expression
in ENS, which are shown in the following formulas.

ωef =
hef(Si)

hef(Si) + hep(Si) + hnf(Si)
(3)

ωnp =
hnp(Si)

hnp(Si) + hep(Si) + hnf(Si)
(4)

hef(Si), hnf(Si) and hep(Si) are considered to design ωef, and the structure form is
consistent with that of the expression to be weighted. Therefore, it is not necessary to
consider the symbol factor of hef(Si), hnf(Si) and hep(Si), where hef(Si) is proportional
to ωef, and hep(Si) and hnf(Si) are inversely proportional to ωef. To balance the value
of weights and give different weights to each part to be weighted, hef(Si) is put as a
component of the denominator.

Each expression of ENS is considered as a whole and weighted by ωef and ωnp respec-
tively, and then a weighted suspiciousness metric ENSω is proposed.

ENSω(Si) = ωef ·
aef

aef + aep + anf

+ ωnp ·
anp

anp + aep + anf

(5)

The different contribution of each expression to the suspiciousness is reflected. A high
value of hef(Si) means a high value of ωef, which implies a high probability that Si causes
the fault. Similarly, a high value of hnp(Si) indicates a high probability that Si causes the
fault.

2522 W. JIANG, J. REN AND Y. HUANG

4. The Comprehensive Statement Ranking Algorithm for Fault Localization.
A comprehensive statement ranking algorithm based on suspiciousness and dependence
information is designed, which applies suspiciousness result and dynamic dependence
information of failed execution to ranking statements of a given fault program.

For a fault program, work of four phases should be completed in the algorithm to obtain
comprehensive statement ranking. First of all, the program is compiled and executed with

Algorithm 1 : The comprehensive statement ranking algorithm
Input : fault versions of program, test suite {Tj}
Output : comprehensive statement sequence for each version with each metric
1. For each fault version Vk

2. Compile fault program
3. Gather static dependence information
4. End for
5. For each fault version
6. For each test case Tj

7. Execute fault program with test case Tj

8. Collect tracing information of the execution
9. Compare actual result with expected result, output rj

10. End For
11.End For
12.For each fault version
13. For each failed test case Tj

14. Extract execution trace from tracing information
15. Gather dynamic control dependence information {Sji

→ Sjk
}

16. Gather dynamic data dependence information {Sjp → Sjq}
17. End For
18.End For
19.For each fault version
20. For each metric
21. For each statement Si

22. Compute aef(Si), aep(Si), anf(Si) and anp(Si) by using execution traces
23. Compute hef(Si), hep(Si), hnf(Si) and hnp(Si) by using execution traces
24. Compute suspiciousness of statement Si by the metric
25. End For
26. Rank statements on basis of suspiciousness result
27. Obtain sequence {Si1 , Si1 · · ·SiN}
28. End For
29.End For
30.For each fault version
31. If {failed test cases} ̸= ∅
32. For each metric
33. For each statement Sik in {Si1 , Si1 · · ·SiN}
34. Get its control and data dependence statements
35. Rank these statements with suspiciousness
36. Insert its dependence statements after the statement
37. End For
38. Output the comprehensive statement sequence
39. End For
40. End If
41.End For

ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.7, NO.12, 2016 2523

test cases, and execution traces and results are recorded. In addition, with tracing infor-
mation of failed execution, the control and data dependence statements are gathered, and
the related statements in execution are obtained. Then, the suspiciousness of statements
can be computed by using the suspiciousness metrics. At last, on the basis of suspi-
ciousness result, with the control and data dependence information, the comprehensive
statement ranking is obtained.

The comprehensive statement ranking algorithm is presented as in Algorithm 1.
With our proposed suspiciousness metrics or other metrics, all statements are ranked as

the sequence of statements {Si1 , Si2 · · ·SiN} based on suspiciousness. For the statement
Sik , its control and data dependence statements of failed execution are ranked as the sub-
sequence {Sik1 · · · } with suspiciousness. Then the subsequence is added to the compre-
hensive ranking sequence of statements {Si1 , {Si11 · · · } · · ·Sik , {Sik1 · · · } · · ·SiN}. If one
statement has emerged in the sequence, it is unnecessary to add the statement. As a result,
the comprehensive ranking sequence {Si1 , {Si11 · · · } · · ·Sik , {Sik1 · · · } · · ·SiN , {SiN1 · · · }}
is finally obtained. Then programmer can inspect statements according to the order of
each statement in the sequence until the fault is located.

As shown in 34-36 lines of algorithm, the suspiciousness-based statement ranking re-
sult is improved by using ranked control and data dependence statements. Besides the
ranked control and data dependence strategy, other four different strategies of using de-
pendence information to obtain comprehensive statement can be used, which are the data
dependence strategy, the control and data dependence strategy, the data and control de-
pendence strategy and the ranked data dependence strategy. The performance of each
strategy will be discussed in the experiment.

That there is none of failed test cases means there is none dependence information
of failed execution. Therefore, the suspiciousness-based statement ranking sequence is
considered as the final result.

5. Experiment. The performance of our proposed metrics for fault localization is com-
pared with that of aef-based metric Tarantula (TA), and spectra-based metrics Hamann
(HAN) and WONG2. And the performance of comprehensive ranking for fault localization
with different strategies is discussed.

5.1. Experiment setup. Experiments are conducted on the typical program of “tcas”
in Siemens Suite. Different faults were seeded as realistic as possible, and 41 fault versions
of program “tcas” are provided. And 35 versions are selected in the experiment. A large
test pool containing possible test cases was created as “Universe” suite. To reduce the
time-consumption of fault localization, test suites of two types “bigrand” and “bigcov”
are utilized. Test suite of “bigcov” type was generated to achieve branch coverage. With
the same size of “bigcov”, test suite of “bigrand” was generated randomly. To avoid the
particularity of one test suite, four test suites of each type are used to investigate the
average performance. Experiment environment is Fedora Core System, and the compre-
hensive statement ranking algorithm is realized by Java programming language, which
refers to the software infrastructure of WET [9].

5.2. Experiment results and analysis. Based on suspiciousness results with suites of
“bigrand” type, the average ranking of fault of each fault version with each metric is
obtained, which is shown in Figure 1. From 41 faulty versions, 35 are chosen and used.
The other versions like versions 10 and 11 are abandoned.

A stable average ranking of fault of “tcas” with “bigrand” suites is obtained by using
our proposed metrics. Our metrics, especially ENSω, outperform metrics of TA, HAN
and WONG2. ENS gains an average increase of 10.4%, 0.5% and 0.5% respectively, and
ENSω gains an average increase of 14.8%, 4.9% and 4.9% respectively. Furthermore,
ENSω performs better than ENS for many versions, such as versions 2, 4, 6, 9. Metric

2524 W. JIANG, J. REN AND Y. HUANG

1 2 3 4 5 6 7 8 9 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 34 35 36 37 38 39 41
0

20

40

60

80

Faulty Version

A
vg

 R
an

ki
ng

 ENS ENSω TA HAN WONG2

Figure 1. The average ranking of fault with “bigrand” suites

1 2 3 4 5 6 7 8 9 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 34 35 36 37 38 39 41
0

20

40

60

80

Faulty Version

A
vg

 R
an

ki
ng

 ENS ENSω TA HAN WONG2

Figure 2. The average ranking of fault with “bigcov” suites

1 2 3 4 5 6 7 8 9 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 34 35 36 37 38 39 41
0

20

40

60

80

Faulty Version

A
vg

 C
om

pr
eh

en
si

ve
 R

an
ki

ng

ENS ENSω ENSD ENSωD ENSCD ENSωCD

ENSDC ENSωDC ENSRD ENSωRD ENSRCD ENSωRCD

Figure 3. The average comprehensive ranking of fault with “bigrand” suites

of TA is obviously ineffective for some versions, such as versions 8, 13, 19 and 39. In
contrast, our metrics can even work in this case, and ineffectiveness of aef-based metric is
solved.

With test suites of “bigcov” type, the average ranking of fault of each version with each
metric is shown in Figure 2.

Even with “bigcov” suites, a stable performance can be obtained by using our proposed
metrics. ENS gains an average increase of 1.3%, and up to 3.2% in specific case over
the three metrics. ENSω increases the average ranking about 5.6%, 2.8% and 2.8% on
average. The performance of TA is not stable, and ineffective for some versions.

With test suites of “bigrand”, suspiciousness results with ENS and ENSω are obtained.
Two comprehensive rankings are obtained without dependence information, and ten are
obtained with dependence information by using five different strategies. The average
comprehensive ranking of fault of each fault version with each method is shown in Figure
3.

ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.7, NO.12, 2016 2525

With data dependence information of failed executions, ENSD and ENSωD have better
performance, and gain an average increase of 5.6% and 7.6% respectively. With five dif-
ferent comprehensive ranking strategies, ENSD, ENSCD, ENSDC, ENSRD and ENSRCD
increase the average ranking about 5.6%, 4.3%, 4.3%, 5.1% and 4.2% respectively over
ENS. And ENSωD, ENSωCD, ENSωDC, ENSωRD and ENSωRCD increase the average
ranking about 7.6%, 6.5%, 6.5%, 7.1% and 6.4% respectively. Our comprehensive state-
ment ranking algorithm performs better than other metrics for version 5 where the fault
is missing partial code in assignment statement and version 34 where the fault is in if
condition.

By using dependence information (except ENS and ENSω) and suspiciousness results
with test suites of “bigcov”, the average comprehensive ranking of each version is obtained,
as shown in Figure 4.

1 2 3 4 5 6 7 8 9 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 34 35 36 37 38 39 41
0

20

40

60

80

Faulty Version

A
vg

 C
om

pr
eh

en
si

ve
 R

an
ki

ng

ENS ENSω ENSD ENSωD ENSCD ENSωCD

ENSDC ENSωDC ENSRD ENSωRD ENSRCD ENSωRCD

Figure 4. The average comprehensive ranking of fault with “bigcov” suites

ENSD, ENSCD, ENSDC, ENSRD and ENSRCD gain an average increase of 4.5%,
3.1%, 3.1%, 4.4% and 2.9% respectively, and ENSD, ENSωCD, ENSωDC, ENSωRD and
ENSωRCD gain an average increase of 6.5%, 5.1%, 5.1%, 6.2% and 4.9% respectively.
Each method with different performance all has good performance for many versions,
especially for versions 7, 16, 17, 18 and 19.

6. Conclusions. We propose a suspiciousness method ENS based on failed execution
and successful non-execution spectra. And a weighted suspiciousness method ENSω is
designed by using our proposed execution trace self-information. With the suspiciousness
ranking result, a comprehensive statement ranking algorithm is designed to assist locating
software fault. Experiments show that fault mostly has higher ranking with test suites of
different types. ENS and ENSω outperform other methods, especially ENSω, and fewer
statements have to be examined for fault localization. Furthermore, the fault ranking
can be increased by using the comprehensive statement ranking algorithm. And fewer
statements need to be examined according to the ranking until the fault is located.

To locate fault in large and complex software system effectively, it should be considered
in the future work how to design fault localization method to combine fault localization
method of statement granularity and method of function granularity.

Acknowledgment. This work was supported by the National Natural Science Founda-
tion of China (No. F020512, F020204), the Natural Science Foundation of Hebei Province
(No. F2014203152) and the Education Department of Jilin Province [2016]96.

REFERENCES

[1] J. Ren, C. Wang, H. He and J. Dong, Identifying influential nodes in weighted network based on
evidence theory and local structure, International Journal of Innovative Computing, Information
and Control, vol.11, no.5, pp.1765-1777, 2015.

2526 W. JIANG, J. REN AND Y. HUANG

[2] S. Yoo and M. Harman, Regression testing minimization, selection and prioritization: A survey,
Software Testing, Verification and Reliability, vol.22, no.2, pp.67-120, 2012.

[3] C. Fang, Z. Chen, K. Wu and Z. Zhao, Similarity-based test case prioritization using ordered se-
quences of program entities, Software Quality Journal, vol.22, no.2, pp.335-361, 2014.

[4] P. Rao, Z. Zheng, T. Y. Chen, N. Wang and K. Cai, Impacts of test suite’s class imbalance on
spectrum-based fault localization techniques, Proc. of the 13th International Conference on Quality
Software, Najing, China, pp.260-267, 2013.

[5] W. Wong, Y. Qi, L. Zhao and K. Cai, Effective fault localization using code coverage, Proc. of the 31st
Annual International Computer Software and Applications Conference, Beijing, China, pp.449-456,
2007.

[6] L. Naish, H. J. Lee and K. Ramamohanarao, A model for spectra-based software diagnosis, ACM
Trans. Software Engineering and Methodology, vol.20, no.3, pp.1-32, 2011.

[7] T. Janssen, R. Abreu and A. J. C. Van Gemund, Zoltar: A spectra-based fault localization tool, Proc.
of the 2009 ESEC/FSE Workshop on Software Integration and Evolution Runtime, Amsterdam, The
Netherlands, pp.23-29, 2009.

[8] P. Daniel, K. Y. Sim and S. Seol, Improving spectrum-based fault-localization through spectra
cloning for fail test cases, Contemporary Engineering Sciences, vol.7, no.14, pp.677-682, 2014.

[9] X. Zhang and R. Gupta, Whole execution traces and their applications, ACM Trans. Architecture
and Code Optimization, vol.2, no.3, pp.301-334, 2005.

