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Abstract. Automatic image annotation is an important research problem in computer
vision. Many existing algorithms integrate multiple types of features of sample images
into joint sparse coding framework to achieve better annotation performance. However,
joint sparse representation only applies the sparsity to coding coefficients between the
rows, which is limited in many cases, and the label information cannot be employed
effectively to boost the discriminative power. In this paper, we present a multi-view
mixed-norm sparse coding framework for image annotation, which integrates multiple
features into sparse coding for multi-view learning problem. We introduce the mixed-
norm sparsity by combining L1-norm with L∞,1-norm regularization together to best
represent images. In addition, the label information is considered as an additional view
which leads to a simple and direct label transfer scheme. Experimental results on Corel5K
and ESP Game datasets demonstrate the effectiveness of proposed method compared with
the related approaches for image annotation task.
Keywords: Multi-view learning, Image annotation, Mixed-norm regularization, Sparse
coding

1. Introduction. Automatic image annotation refers to the task of automatically as-
signing relevant text labels to a given image based on its semantic content. It has become
an active research topic since it is crucial for searchable databases. Image annotation is
essentially a typical multi-label learning problem, in which each image could be associ-
ated with multiple labels. Many algorithms have been proposed to solve this problem
by making full use of ground truth. Although great progress has been made in recent
years, the problem is still challenging since an arbitrary image often captures a variety of
semantic concepts, each of which would require separate detection.

Multiple features are usually employed in image annotation and classification to exploit
the complementary information for performance improvement. Considerable efforts [1-6]
have been made to combine information from different features. Guillaumin et al. [1]
concatenate different features into a long feature vector for a KNN based image annota-
tion. Makadia et al. [2] and Zhang et al. [3] introduce sparsity and group sparsity into
feature selection to get the weight for each bin of features. Shi et al. choose more sparse
and more discriminative features by exploiting the L2,1/2-matrix norm with shared sub-
space learning for supervised [4] and semisupervised [5] image annotation. However, the
concatenating feature cannot efficiently explore the complementary of different features
because it improperly treats different features carrying different physical characteristics
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[9]. Yuan et al. [6] present a multi-task joint sparse representation coding for image clas-
sification which generates different sparse representation tasks from different modalities
of features and uses the constraint of joint sparsity across different tasks to enforce the
robustness in coefficient representation. However, they assume that all the tasks share
the same sparsity pattern, which is not applicable when the number of features increases
because of the diversity of multiple features. Zhang et al. [7] propose a mixed-norm
sparse representation for multi-view face recognition. It integrates multiple poses of face
image by multi-view learning, and introduces a mixed-norm sparse representation coding
combining typical L1-norm and joint L2,1-norm together to get a more flexible representa-
tion. However, image annotation is a multi-class multi-label classification problem, which
cannot use their models directly. Kalayeh et al. [8] and Liu et al. [9] introduce labels
as well as multiple features into multi-view learning which makes the label transfer to be
very simple.

Inspired by [7-9], we propose to learn a multi-view mixed-norm sparse coding (mMSC)
for image annotation. We integrate multi-view learning into the mixed-norm sparse repre-
sentation framework aiming to find an optimized coefficients representation. We combine
the L1-norm with L∞,1-norm together and get a balance between them to find a better
sparse representation for each image. Instead of using all the training samples as dictio-
nary which leads to computation complexity and additional noise information introduced
from the training samples, we introduce dictionary learning simultaneously to get a sparse
linear combination of atoms from the dictionary to represent the images. Besides, we also
treat the label information as an additional view, which boosts the discrimination and
leads to simple label transfer scheme while not adding more computing complexity. Our
experiments on Corel5K and ESP Game datasets demonstrate the effectiveness of the
proposed method compared with the related methods.

The rest of this paper is organized as follows. Related work will be briefly discussed in
Section 2. We will describe the details of our multi-view mixed-norm sparse coding and
the label transfer scheme in Section 3. Experiments will be conducted in Section 4. We
will conclude our work in Section 5.

2. Related Work. Our work is closely related to the sparse coding and multi-modality
learning related methods for image annotation.

2.1. Sparse coding based image annotation. The past decades have witnessed the
rapid development of the theory and algorithms of sparse coding and its widely and
successful application in computer vision. It has also been applied to solving image
annotation problems. For example, Wang et al. [10] propose to use multi-label sparse
coding to automatically label images. Zhao et al. [11] explore the complementary nature of
forward and backward sparse coding to find a cooperative kernel sparse representation for
image annotation. Both of them use L1-norm sparsity regularization to adaptively select
training images to reconstruct test image. While these methods obtain good results, any
structure prior in the observed data failed to be considered, which is often useful for image
annotation. Zhang et al. [3] consider each type of feature as a group and introduce group
sparsity to select features for image annotation. Gao et al. [12] treat each (sub)class
of samples as a (sub)group and present a multilayer group-sparse coding to classify and
annotate single-label images concurrently. They use a joint sparsity with L2-norm inside
a group and L1-norm between the groups to encourage members of the same group to rely
on the same dictionary entries. Liu et al. [9] introduce multi-view learning joint sparse
coding for image annotation in which the sparsity constraint is applied between the rows
of coefficient matrix to select dictionary columns sparsely. Although the joint sparsity
helps to improve the annotation performance, it does not work well for the samples with
large variance in the same group.
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2.2. Multi-modality learning. In practice, it is often the case that we can obtain
multiple modalities of features from the same image, such as color histogram, edge sketch
and local binary patterns (LBP), characterizing different properties of an image. These
different features capture different aspects. It would be beneficial if we could exploit
these complementary features together for classification and annotation. Conventional
approaches concatenate different features into a long vector, and adopt different feature
selection methods to determine the weight for each type of feature. Recently, multi-feature
learning has been introduced in many applications [13-16]. Wang et al. [13] introduce
multiple features in metric learning for semantic classification and automatic tagging.
Yang et al. [14] use multi-feature collaborative model for pattern classification. Yuan et
al. [6] present a multi-task joint sparse representation for image classification. Sandhan
and Jin [15] and Hu et al. [16] apply multi-feature joint sparse representation for gesture
recognition and object tracking respectively. However, these learning frameworks do not
account for the class label information, which is crucial for image annotation. Kalayeh
et al. [8] and Liu et al. [9] introduce multi-view learning for image annotation. Both
of them treat labels as an additional view, which exploits the discriminative information
effectively and obtains better annotation performance.

3. Proposed Method. In this section, we will describe the formulation of our method,
its optimization and the labels transfer scheme.

3.1. Multi-view mixed-norm sparse representation model. We propose to learn
a multi-view mixed-norm sparse coding for image annotation. We employ the multiple
modalities of features into the sparse coding framework for multi-view learning as well
as dictionary learning. In addition, we treat the label information as an additional view
to boost the discrimination power. Suppose we are given a dataset of N training sample
images, each of which has K different features. Denote by X(k) ∈ RPk×N (k = 1, . . . , K),
the feature vector matrix for the kth feature from the training samples (Pk is the dimen-
sion of the kth feature), by D(k) ∈ RPk×Nd , the dictionary entries with Nd atoms for the
kth feature, and by ω ∈ RNd×N , the shared coding coefficient matrix of training samples
feature over dictionary among multiple views. Label information can be considered as

another view X(K+1) =
[
x

(K+1)
1 , x

(K+1)
2 , . . . , x

(K+1)
i , . . . , x

(K+1)
N

]
∈ RPc×N , Pc is the num-

ber of labels, x
(K+1)
i ∈ RPc is the label vector of the ith image, and each entry is either 1

or 0 representing whether the occurrence of a certain label in the image or not. We aim
to find a set of dictionary entries D =

{
D(1), D(2), . . . , D(K+1)

}
and the corresponding

representation coefficient ω by solving the optimization problem:

min
ω,D(k)

1

2N

K+1∑
k=1

∥X(k) − D(k)ω∥2
F + λ [γ∥ω∥1 + (1 − γ)∥ω∥p,1] (1)

where [γ∥ω∥1 +(1− γ)∥ω∥p,1] is the mixed-norm sparsity regularizer, and λ is the weight
used to control the regularizer. γ is the tuning parameter to control the trade-off be-
tween L1-norm regularization term and Lp,1-norm term. Generally, p can be 2 or ∞.
When γ = 1, Equation (1) reduces to the typical multi-view sparse coding (mSC), and
∥ω∥1 =

∑
ij |ωij|, which exploits the shared information between different views and tries

to find an absolute sparse coefficient matrix to select dictionary entries based on the best
representation, but it does not consider each dictionary atom (column) as a group which
reflects a type of feature for a single image; when γ = 0, Equation (1) is the multi-view
joint sparse coding (mJSC), and ∥ · ∥p,1 is defined as the sum of the Lp-norm of all rows
of a matrix, which encourages rows of ω to be sparse and columns to be dense. It helps
to automatically discover the row dimensionality of the weight coefficients and represent
the shared information between multiple views in a single latent dimension. Although it
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treats the dictionary column as a whole, it requires the multiple sparse representation co-
efficients to share the same sparsity pattern, which omits the diversity of different features
and will get less performance when the features increase. When γ is in the range (0, 1),
the formulation will automatically get the balance and adapt to the underlying statistics.
In this paper, we use the L∞,1-norm regularizer since it has been proven more effective
than the L2,1-norm [17].

The optimization problem in Equation (1) is convex in D(k) for a fixed ω and vice-
versa. Therefore, it can be solved by alternating between optimizing D(k) with a fixed ω
and the opposite. Such process is iterated until the solutions of ω and D(k) converge to
some local minimum.

By fixing D(k), Equation (1) can be simplified to:

min
ω

1

2N

K+1∑
k=1

∥∥X(k) − D(k)ω
∥∥2

F
+ λ[γ∥ω∥1 + (1 − γ)∥ω∥∞,1] (2)

which is a convex function, and the first term is differentiable with Lipschitz gradient, and
could be solved effectively by a variant of Nesterovs first order method which is similar
to [9].

By fixing ω, Equation (1) can be simplified to:

min
D(k)

1

2N

K+1∑
k=1

∥∥X(k) − D(k)ω
∥∥2

F
(3)

which is a convex function and can be solved by the Lagrangian method.

3.2. Label transfer. Since we treat labels as an additional view, the label information
from the sparse code can be inferred directly. In particular, given a test image represented

by multi-view features X∗ =
{

x
(1)
∗ , x

(2)
∗ , . . . , x

(K)
∗

}
and the learned dictionary D from the

training samples, the label view of the test image x
(K+1)
∗ can be estimated by the following

two steps. First, we obtain ω∗ by solving the following convex problem:

min
ω∗

1

2

K∑
k=1

∥∥x(k)
∗ − D(k)ω∗

∥∥2

F
+ λ[γ∥ω∗∥1 + (1 − γ)∥ω∗∥∞,1] (4)

Then, we can get label view of the testing image by

x(K+1)
∗ = D(K+1)ω∗ (5)

The top 5 values of the label view can be considered as possible labels.

4. Main Results. In this section, we will evaluate the proposed method for image
annotation experimentally. We compare the proposed mMSC with related sparse cod-
ing algorithms including multi-view sparse coding (mSC) and multi-view joint sparse
coding (mJSC) with L∞,1-norm as well as some related state-of-arts including multi-
label sparse coding (MSC) [10], LASSO [2] and group sparse coding (GS) [3]. For
MSC, we concatenate 15 different features into a long feature vector. For all the multi-
view method, we use labels as an additional view. Parameter λ is tuned in the range
{0.0001, 0.001, 0.01, 0.1, 1, 10, 100} corresponding to the best F1 value, and γ in our mMSC
is tuned in the range [0, 1]. The number of dictionary atoms is set to be 200. We auto-
matically annotate each image with 5 labels.
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Algorithm 1. Multi-view mixed-norm sparse coding for image annotation.
Input:

The kth view matrix of training samples X(k) ∈ RPk×N , 1 ≤ k ≤ K + 1;

The kth feature vector of test image x
(k)
∗ ∈ RPk , 1 ≤ k ≤ K;

Paramters λ ≥ 0, 0 ≤ γ ≤ 1.
Output:

Label view of test image x
(K+1)
∗ .

1: Initialize D(k), (1 ≤ k ≤ K + 1) and ω, e.g., with random entries;
2: While not convergence do
3: Update ω with fixed D(k), (1 ≤ k ≤ K + 1) by Equation (2);
4: Update D(k), (1 ≤ k ≤ K + 1) with fixed ω by Equation (3);
5: end while
6: Learning sparse coefficients ω∗ for the test image with learned dictionary D(k)

(1 ≤ k ≤ K) and multiple features of test image x
(k)
∗ (1 ≤ k ≤ K) by Equation

(4);

7: Get x
(K+1)
∗ by Equation (5) using learned dictionary D(K+1) and coding coef-

ficients ω∗.

4.1. Dataset and evaluation metrics. We perform experiments on two popular data-
sets: Corel5K [18] and ESP Game [19]. Corel5K contains 5,000 images including 4,500
training images and 500 testing images. Each image is manually annotated with 3-5 labels
from a dictionary of 374 keywords, and 3.5 keywords on average. ESP Game contains
20,770 images including 18,689 training images and 2,081 testing images. Each image has
up to 15 labels from a dictionary of 268 keywords, and 4.7 keywords on average.

We use the publicly available features provided by [1], which consists of 15 features
representing each image including a GIST feature, 2 Hue and 2 SIFT features (ex-
tracted on dense grids and Harris-Laplacian interest points respectively, represented as
DenseHue, HarrisHue, DenseSIFT, and Harris-SIFT), and 6 special histogram features
(computed over a 3 × 1 horizontal decomposition of the image, represented as Dens-
eSIFTV3H1, Harris-SIFTV3H1, DenseHueV3H1, HarrisHueV3H1, RGBV3H1, LabV3H1
and HSVV3H1). Following the evaluation metrics used in [3,8], we measure the annota-
tion performance by average precision (AP), average recall (AR) across all labels, and the
number of labels with non-zero recall (N+) as well as F1 measure.

Table 1 presents some examples of the predicted annotations produced on Corel5K and
ESP Game datasets by our method. The differences between predicted and ground truth
labels are marked in italic font. We notice that, in many cases, some predicted labels not
contained in the ground-truth label set can still explain the image well, such as “turn”
in the first image. That is because the ground-truth labels are not completed, and shows
the effectiveness of our proposed method for automatic image annotation task.

4.2. Results. Table 2 demonstrates the performance of our proposed method compared
with the related methods on both datasets. As can be seen, our method achieves the best
performance on all the evaluation metrics. In particular, we find all the multi-view meth-
ods are better than MSC with concatenating long vector which exploits label information
by multi-label linear embedding. This validates that the multi-view learning can exploit
the image features and labels more effectively and helps to find a better representation for
each image. In addition, based on the same multi-view learning framework, mixed-norm
sparse coding method outperforms the other two sparse coding ones, which shows the
power of mixed-norm sparse coding to select atoms dynamically.

Figure 1 demonstrates the relation between parameter γ and the annotation perfor-
mance using our method. The horizontal axis represents the tuning parameter γ, and the
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Table 1. Comparison of predicted labels with ground truth labels for im-
ages from Corel5K and ESP Game datasets

Images
from

Corel5K

Ground
truth
labels

cars, formula,
tracks, wall

sculpture,
sphinx, stat-
ue, stone

field, foals,
horses, mare

jet, plane,
sky, smoke

bengal, cat,
forest, tiger

Predicted
labels

cars, formula,
tracks, wall,
turn

sculpture, sp-
hinx, statue,
stone, bear

field, foals,
horses, mare,
grass

jet, plane,
sky, smoke,
prop

bengal, cat,
forest, tiger,
tree

Images
from ESP

Game

Ground
truth
labels

pink, girl,
bookmark,
read

grass, goat,
animals, man,
hat

fingers, type,
keyboard

blue, boy,
school, paper,
smile

house, plant,
tree, window,
fence, build-
ing

Predicted
labels

blue, girl,
book, read,
pink

grass, dog,
man, animal,
ground

finger, keyb-
oard, type,
hand, black

blue, boy,
girl, paper,
smile

building,
tree, window,
hourse, plant

Table 2. Annotation results comparision on two Datasets. MSC* refers
to our implementation of [10] using our features concatenated as a long
vector.

Corel5K ESP Game
method AP AR N+ F1 AP AR N+ F1
LASSO [2] 0.24 0.29 127 0.263 0.21 0.24 224 0.224
MSC* 0.27 0.32 140 0.293 0.22 0.24 220 0.23
GS [3] 0.30 0.33 146 0.314 − − − −
mSC 0.28 0.33 143 0.303 0.26 0.25 230 0.255
mJSC 0.29 0.33 148 0.309 0.24 0.24 228 0.240
mMSR 0.31 0.35 155 0.329 0.27 0.26 236 0.265

vertical axis represents the value of F1. It also verifies that mixed-norm sparse coding
(0 < γ < 1) improves the annotation performance more or less compared with SC(γ = 1)
and JSC(γ = 0). We can see that for the best value of F1, γ selected for ESP Game
dataset is larger than that for Corel5K dataset. That may be because the test images
in ESP Game dataset have more variation which needs more flexible atom selection by
L1-norm.

5. Conclusions. This paper presents a multi-view mixed-norm sparse coding framework
for image annotation problems. The main contribution of our method is introducing
mixed-norm sparse coding into multi-view learning, which encodes the multiple feature
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Figure 1. Relation between γ and F1 performance

views of samples as well as the label view to boost the learning performance. The mixed-
norm sparse coding achieves a balance between the element-wise sparsity of L1-norm and
the row-wise sparsity of L∞,1-norm, which helps to select dictionary atoms adaptively for
better representation. Experimental results show the improvement of our method over
the related methods for image annotation task. Our future research direction is to apply
multi-view mixed-norm sparse coding into semi-supervised image annotation task.
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