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Abstract. This paper focuses on the tensor generalized eigenproblem Axm−1 =λBxm−1,
where A and B are real weakly symmetric tensors and B is positive definite. Particu-
larly, when A is positive definite, we introduce two unconstrained variational models and
analyze these models whose global minima are precisely the B-eigenvectors of A asso-
ciated with the largest B-eigenvalue of A. The main results are natural extension of
unconstrained variational principles for eigenvalues of symmetric matrices. Numerical
examples are reported to show the effectiveness of these methods for finding a Z-eigenvalue
and an H-eigenvalue of an even order symmetric positive definite tensor.
Keywords: Positive definite tensors, Weakly symmetric tensors, Tensor eigenproblem,
Unconstrained optimization

1. Introduction. Tensor eigenproblem has become an important topic in numerical mul-
tilinear algebra. Eigenvalues of tensors were first introduced by Qi [1] and Lim [13] in
2005. It plays a fundamental role in many fields, such as image analysis [7], spectral graph
theory [8], and automatic control. However, it is very difficult to compute eigenvalues of
high order tensors, which is an NP-hard problem [9]. Sometimes we only need to calcu-
late the largest eigenvalue of a tensor, for instance, the best rank-one approximation of
a symmetric tensor [10]. Various efficient approaches have been proposed for computing
eigenvalues of tensors recently, see for example, [2,6,10-12] and the references therein. In
particular, Han [2] proposed two unconstrained optimization models for finding general-
ized eigenpairs of symmetric tensors. The models are given by

min F1(x) =
1

2m
(Bxm)2 +

1

m
Axm (1)

and

min F2(x) =
1

2m
(Bxm)2 − 1

m
Axm (2)

where A and B are weakly symmetric tensors. He proved that problem (1) and problem
(2) can be used to find the smallest and largest B-eigenvalue of A, respectively. In [6],
a Jacobian semi-definite relaxation approach was presented to compute all of the real
eigenvalues of symmetric tenors. A shifted higher order power method was proposed
for computing Z-eigenpairs in [10]. In [11], an adaptive version of higher order power
method was presented for generalized eigenpairs of symmetric tensor. A subspace projec-
tion method was proposed in [12] for Z-eigenvalues of symmetric tensors.

In this paper, we mainly study how to find the largest B-eigenvalue of weakly symmetric
positive definite tensors. Our first goal is to analyze some functions whose global minima
point are the eigenvectors associated with the largest B-eigenvalue of A. An alternative
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method for calculating the largest B-eigenvalue of a symmetric tensor A is to solve the
constrained optimization problem

maxAxm s.t. Bxm = 1, (3)

and the critical points of problem (3) are B-eigenvectors of A. However, the nonlinearity of
constraint condition makes this problem less attractive [2]. It is a more attractive approach
to compute eigenvalues of even order tensor by using unconstrained optimization. We
further introduce two unconstrained variational principles for calculating B-eigenpairs
of weakly symmetric positive definite tensors. One of our purposes is to compare the
performance of these variational principles for finding the largest B-eigenvalue. Some
numerical experiments illustrated that our models are faster than Han’s models in [2] and
could reach the largest eigenpair with a higher probability.

The rest of our paper is organized as follows. In Section 2, we list some notations
and preliminary results in numerical multilinear algebra and polynomial optimization.
In Section 3, we propose two unconstrained optimization problems and analyze some
variational characterizations for the largest B-eigenvalues of tensor A. In Section 4, we
give some numerical results. We finish the paper with some conclusions and discussions
in Section 5.

2. Preliminaries. Tensor is also referred to as the multidimensional array. Let R be the
real filed, and let m and n be positive integers. A real-valued mth-order n-dimensional
tensor is indexed as

A = (Ai1i2···im) ∈ Rn×n×···×n, 1 ≤ i1, i2, · · · , im ≤ n.

The tensor A is symmetric if each entry Ai1i2···im is invariant under any permutation
of (i1, i2, · · · , im). A real-valued mth-order n-dimensional tensor uniquely defines an m
degree homogeneous polynomial function

Axm =
n∑

i1,i2,··· ,im

Ai1i2···imxi1xi2 · · ·xim .

If Axm is positive (or nonnegative) for all x ∈ Rn \ {0}, then we call A is positive definite
(or positive semidefinite). The Axm−1 is a vector in Rn with its ith component as(

Axm−1
)

i
=

n∑
i2,··· ,im

Aii2···imxi2 · · ·xim .

For a vector x := (x1, x2, · · · , xn)T ∈ Rn and a positive integer k, we denote

x[k] :=
(
xk

1, x
k
2, · · · , xk

n

)T
.

If the gradient of Axm satisfies

∇(Axm) = mAxm−1, ∀x ∈ Rn,

then A is called weakly symmetric. If A is symmetric, then it is weakly symmetric, but
the converse is not true in general [5].

There are many different definitions of eigenvalues for tensors have been proposed in the
literature, particularly, the real eigenvalues including H-eigenvalues [1,13], Z-eigenvalues
[1,13] and D-eigenvalues [14]. In [5], the unified notion of eigenvalues was given for all
mth-order n-dimensional tensors, which is called generalized eigenvalue.

Definition 2.1. ([5]) Let A and B be the mth-order n-dimensional real weakly symmetric
tensors. Assume further that m is even and B is positive definite. We say (λ, x) ∈ R ×
{Rn \ {0}} is a generalized eigenpair of (A,B). If

Axm−1 = λBxm−1,
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we also call λ is a B-eigenvalue of A and x a B-eigenvector with respect to λ. In [2], the
B-spectrum of A was given by

σB(A) = {λ : λ is a B-eigenvalue of A}.

When B takes different tensors, B-eigenvalue reduces to be different types of eigenvalues.
In [5], the authors have given some special B-eigenvalues, and we recall them as follows.

• When B = I, I is the identity tensor; when Bxm = ∥x∥m
m and Bxm−1 = x[m−1], the

B-eigenvalues are just the H-eigenvalues [1,13].

• When B = Im/2
n , the tensor product of m/2 copies of identity matrix In ∈ Rn×n.

When Bxm = ∥x∥m
2 and Bxm−1 = ∥x∥m−2

2 x, the B-eigenvalues are just the Z-eigenvalues
[1,13].

• When B = Dm/2, the tensor product of m/2 copies of the symmetric matrix D ∈
Rn×n. When Bxm = xT Dx and Bxm−1 = (xTDx)

m−2
2 x, the B-eigenvalues are just the

D-eigenvalues [14].
In [5], Chang et al. proved that any mth-order n-dimensional real weakly symmetric

tensor A has at least n B-eigenvalues. Han [2] proved the existence of real extreme
B-eigenvalues of even order symmetric tensors, which is summarized as follows.

Theorem 2.1. ([2]) Assume that A and B are the mth-order n-dimensional real weakly
symmetric tensors and B is positive definite. Then σB(A) is not empty. Furthermore,
there exist λmin ∈ σB(A) and λmax ∈ σB(A) such that

−∞ < λmin ≤ λ ≤ λmax < ∞, ∀λ ∈ σB(A).

The following theorem gives an important property of weakly symmetric positive defi-
nite tensors.

Theorem 2.2. Assume that B is an mth-order n-dimensional weakly symmetric positive
definite tensor. Let µ > 0 and ν > 0 be the smallest and largest H-eigenvalue of B,
respectively. Then

µ∥x∥m
m ≤ Bxm ≤ ν∥x∥m

m, ∀x ∈ Rn, (4)

where ∥x∥m is the m-norm of x.

Proof: Actually, the left side of inequality (4) is the (2.2) of Theorem 3 in [2]. Similar
to the proof of [2], we can prove the right side of inequality (4). More precisely, when
x = 0, the right side of inequality (4) obviously holds. It follows from Theorem 2.2 that
ν is the global maximum value of

maxBxm, s.t. ∥x∥m
m = 1,

then, for any x ∈ R \ {0}, we have

B
(

x

∥x∥m

)m

≤ ν,

and thus, Bxm ≤ ν∥x∥m
m. The proof is completed. �

In [2], the notion of coercive functions was introduced.

Definition 2.2. ([2]) Assume that function f : Rn → R. If f(x) satisfies lim
∥x∥→∞

f(x) =

+∞, then we call it coercive.

The coercive functions have a fundamental property which is summarized as the fol-
lowing.

Theorem 2.3. ([2]) Let f : Rn → R be continuous. If f(x) is coercive, then f(x) has at
least one global minimizer. If, in addition, the first partial derivatives exist on Rn, then
f(x) attains its global minimizers at its critical points.
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3. Variational Principles for the Largest B-Eigenvalue of Real Weakly Sym-
metric Positive Definite Tensors. Auchmuty [3] proposed some unconstrained varia-
tional principles for real symmetric matrix eigenproblem. Particularly, he considered the
unconstrained optimization problem

min f1(x) = ⟨Bx, x⟩ − 2
√

⟨Ax, x⟩, (5)

where A,B ∈ Rn×n are symmetric matrices and A is positive semidefinite. He proved
that problem (5) can be used to calculate an extreme eigenpair of Ax = λBx. For
Auchmuty’s variational principles, Mongeau and Torki [4] have made a detailed numerical
analysis. Furthermore, they also proposed a new variational principle for finding the
largest eigenvalue of a positive definite matrix. They considered the problem

min f2(x) = ∥x∥2 − ln ⟨Ax, x⟩, (6)

where A is positive definite matrix. The properties of the function f1 and f2 were discussed
in [3] and [4], respectively. Based on these, we next introduce two unconstrained opti-
mization models for computing generalized eigenpairs of even order symmetric positive
definite tensors.

3.1. The first unconstrained variational model. We now consider the function SA,B :
Rn → R defined by

SA,B(x) := Bxm − m(Axm)
1
m , (7)

where A and B are weakly symmetric tensors and A is positive semidefinite. The model
(7) is a natural extension of model (5). Obviously, SA,B is smooth on Rn \ {0}. By simple
calculation, it is easy to get the gradient of SA,B, which is given by

∇SA,B(x) = m
(
Bxm−1 − (Axm)

1−m
m Axm−1

)
. (8)

We summarize the properties of the function SA,B as follows.

Theorem 3.1. Assume that A and B are the mth-order n-dimensional real weakly sym-
metric positive definite tensors. Let λmax be the largest B-eigenvalue of A, and SA,B be
defined in (7). Then
(a) SA,B is coercive on Rn.
(b) The minimum of SA,B is

min
x∈Rn

SA,B(x) = (1 − m)(λmax)
1

m−1 ,

which is attained at any B-eigenvector x corresponding to the B-eigenvalue λmax.
(c) The (nonzero) critical points of SA,B are any B-eigenvector x of A associated with a

B-eigenvalue λ of A satisfying λ =: (Axm)
m−1

m .

Proof: Since B is weakly symmetric positive definite, by Theorem 2.2, we have

Bxm ≥ µ∥x∥m
m, ∀x ∈ Rn,

where µ > 0 is the smallest H-eigenvalue of tensor B, then we have

SA,B ≥ µ∥x∥m
m − m(Axm)

1
m ,

and since A is positive definite, for any x, we also have Axm ≤ τ∥x∥m
m, where τ > 0 is

the largest H-eigenvalue of A. Thus,

SA,B ≥ µ∥x∥m
m − m(τ∥x∥m

m)
1
m → ∞ as ∥x∥ → ∞,

this shows the function SA,B is coercive on Rn, and then (a) holds.
Since the gradient ∇SA,B = 0 at any critical point, namely, the critical points of SA,B

satisfy the equation

Axm−1 = (Axm)
m−1

m Bxm−1 (9)
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This indicates that a nonzero critical point x is a B-eigenvector corresponding to the
B-eigenvalue λ =: (Axm)

m−1
m , as claimed in (c).

Taking the inner product of (9) with x, we obtain

Axm = (Axm)
m−1

m Bxm,

so Bxm = (Axm)
1
m . Moreover, the critical value of SA,B at this critical point x is

SA,B(x) = (1 − m)λ
1

m−1 .

Since SA,B is continuous and coercive on Rn, by Theorem 2.3, a minimum is attained

for SA,B. Obviously, the global minimal value of SA,B is min
x∈Rn

SA,B(x) = (1−m)(λmax)
1

m−1 ,

so (b) holds. The proof is completed. �
Remark 3.1. It can be seen from the above process, at any critical point, the B-eigenvector
satisfies λ =: (Axm)

m−1
m and since Bxm = (Axm)

1
m , then the B-eigenvector also satisfies

λ =: (Bxm)m−1.

3.2. The second unconstrained variational model. We then consider the function
LA,B : Rn \ {0} → Rn defined by

LA,B(x) := Bxm − ln(Axm), (10)

where A and B are weakly symmetric tensors and A is positive definite. The model (10)
is a natural extension of model (6). This function is continuous and smooth on Rn \ {0}.
The gradient of LA,B is given by

∇LA,B(x) = m

(
Bxm−1 − Axm−1

Axm

)
(11)

The properties of this function are summarized by the following theorem.

Theorem 3.2. Assume that A and B are the mth-order n-dimensional real weakly sym-
metric positive definite tensors. Let λmax be the largest B-eigenvalue of A, and LA,B be
defined in (10). Then
(a) LA,B is coercive on Rn \ {0}.
(b) The critical points of LA,B are any B-eigenvector x associated with a B-eigenvalue λ.
(c) The minimum of LA,B is

min
x∈Rn\{0}

LA,B(x) = 1 − ln(λmax),

which is attained at any B-eigenvector x corresponding to the B-eigenvalue λmax, satisfying
λmax = Axm.

Proof: (a) According to Theorem 2.2, for each x ∈ Rn, we have

Bxm ≥ µ∥x∥m
m,

where µ > 0 is the smallest H-eigenvalue of real weakly symmetric positive definite tensor
B. Hence, we have

LA,B ≥ µ∥x∥m
m − ln(Axm),

and for any x ∈ Rn, we also have Axm ≤ τ∥x∥m
m, where τ > 0 is the largest H-eigenvalue

of A. Thus,
LA,B ≥ µ∥x∥m

m − ln(τ∥x∥m
m) → ∞ as ∥x∥ → ∞.

This shows the coercivity of LA,B.
(b) Note that the gradient ∇LA,B = 0 at any critical point of LA,B, that is

Axm−1 = AxmBxm−1. (12)

This shows that a critical point x is a B-eigenvector corresponding to the B-eigenvalue
λ =: Axm.
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(c) Note that LA,B is continuous and coercive on Rn\{0}, by Theorem 2.3, and a minimum
is attained for LA,B. Taking the inner product of (12) with x, we then have

Axm = AxmBxm,

so Bxm = 1. Moreover, the critical value of LA,B at critical point x is

LA,B(x) = 1 − ln λ.

Clearly, the global minimal value of LA,B is min
x∈Rn\{0}

LA,B(x) = 1 − ln(λmax). The proof is

completed. �
Remark 3.2. Both (7) and (10) are unconstrained optimization problems; thus, any local
optimization methods can be used to solve such problems. However, these methods cannot
guarantee finding a global maximum; they only converge to a critical point. It follows from
Theorem 3.1 and Theorem 3.2 that each critical point corresponds to a B-eigenvalue of

tensor A. Therefore, when B = I, B = I
m/2
n and B = Dm/2, we can obtain Z-eigenvalue,

H-eigenvalue and D-eigenvalue of tensor A, respectively.

4. Numerical Experiments. In this section, we present some numerical results to il-
lustrate the effectiveness of using the unconstrained variational principles (7) and (10) to
calculate the largest Z-eigenvalues and H-eigenvalues of some positive definite even order
symmetric tensors. The experiments were done on a desktop computer with an Intel(R)
Core(TM)2 Duo CPU E7500 @2.93 GHz and a 2GB RAM running Windows 7, using
MATLAB R2013a, the Tensor Toolbox [16]. We use limited-memory quasi-Newton (L-
BFGS) method [15] to solve (7) and (10) and compare the performance of new variational
principles with the Han’s method [2]. The parameters of L-BFGS in our test are given as
follows:

m = 3, β′ = 0.01, β = 0.9, TolX = 10−8, TolFun = 10−8, MaxIter = 1000.

Example 4.1. (see [6]) Consider the 4th-order 3-dimensional tensor A such that

Ax4 = x4
1 + 2x4

2 + 3x4
3.

This is an even order positive definite symmetric tensor. By [6], its all Z-eigenvalues are
respectively

λ1 = 3, λ2 = 2, λ3 = 1.2, λ4 = 1, λ5 = 0.75, λ6 = 0.6667, λ7 = 0.5455.

Example 4.2. (see [6]) Consider the 4th-order 3-dimensional tensor A such that

Ax4 = 2x4
1 + 3x4

2 + 5x4
3 + 4ax2

1x2x3,

where a is a parameter. According to [6], when a = 1, it is an even order positive definite
symmetric tensor. In this case, there exist six Z-eigenvalues and five H-eigenvalues which
are respectively
• Z-eigenvalue: λ1 = 5, λ2 = 3, λ3 = 2, λ4 = 1.8750, λ5 = 1.6133, λ6 = 0.4787;
• H-eigenvalue: λ1 = 5.1812, λ2 = 5, λ3 = 3, λ4 = 2, λ5 = 1.2269.

Example 4.3. (see [2]) Consider the diagonal tensor A with diagonal elements A(i, i, i, i)
= 10i, i = 1, 2, · · · , n; and A(i, j, k, l) = 0 for all other i, j, k, l.

Example 4.4. (see [6]) Let A be a 4th-order 2-dimensional tensor such that

Ax4 = 3x4
1 + x4

2 + 6ax2
1x

2
2,

where a is a parameter. As shown in [6], when a = 2, this tensor is an even order positive
definite symmetric tensor. And in this case, there are three Z-eigenvalues, which are

λ1 = 4.1250, λ2 = 3, λ3 = 1.
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4.1. Computing the largest Z-eigenpairs. In our test, we use 100 randomly generated
initial vectors x0 = 2 ∗ rand(n, 1) − 1, where n is the dimension of tensor A. For each
set of experiments, the same set of random starts was used. Let x be the nonzero critical
point obtained by L-BFGS at termination, and the error defined by ϵ = ∥Ax̃m−1 − λx̃∥2,
where x̃ = x/∥x∥2.

We compute the Z-eigenvalues of A from Examples 4.1-4.4. For the largest Z-eigenvalue,
we list the number of occurrences in the 100 tests. We also list the mean number of
iterations and function evaluations until convergence, the average error and the average
CPU time in the 100 experiments in Tables 1-4.

Table 1. Results of computing Z-eigenvalues of A from Example 4.1

Alg. λ Occ. Error Time (sec.) Iter. FuncEvals
Han’s (2) 3.00 54% 1.08e-08 0.40 14.70 26.37

SA,B 3.00 62% 1.01e-08 0.25 12.39 15.94
LA,B 3.00 68% 1.19e-08 0.27 12.91 16.68

Table 2. Results of computing Z-eigenvalues of A from Example 4.2 (a = 1)

Alg. λ Occ. Error Time (sec.) Iter. FuncEvals
Han’s (2) 5.00 58% 1.26e-08 0.43 16.00 24.54

SA,B 5.00 56% 3.93e-08 0.26 12.14 14.76
LA,B 5.00 56% 1.13e-08 0.30 12.91 16.18

Table 3. Results of computing Z-eigenvalues of A from Example 4.3 (n = 5)

Alg. λ Occ. Error Time (sec.) Iter. FuncEvals
Han’s (2) 50 55% 4.05e-07 1.09 20.36 32.09

SA,B 50 55% 8.64e-08 0.61 15.73 18.55
LA,B 50 53% 8.86e-08 0.83 17.64 24.36

Table 4. Results of computing Z-eigenvalues of A from Example 4.4 (a = 2)

Alg. λ Occ. Error Time (sec.) Iter. FuncEvals
Han’s (2) 4.125 100% 9.71e-09 0.38 14.35 23.35

SA,B 4.125 100% 1.65e-08 0.23 11.80 14.10
LA,B 4.125 100% 1.41e-08 0.25 12.15 14.70

From the numerical results given in Tables 1-4, we see the efficiency of the variational
principles (7) and (10) for finding Z-eigenpairs of even order symmetric positive definite
tensors. It is easy to see from Tables 1-4, the average number of iterations and objective
function evaluations of SA,B and LA,B are much fewer than Han’s (2). And the formu-
lations SA,B and LA,B are more faster for finding the largest Z-eigenvalue than Han’s
method. The SA,B and LA,B perform better than Han’s (2) for finding Z-eigenvalues.
Thus, SA,B and LA,B may be a better choice for calculating Z-eigenvalues of an even or-
der symmetric positive definite tensor. Furthermore, as we can see from Tables 1-4, the
largest Z-eigenvalue is easy to find for some tensors; however, it is difficult to find the
largest Z-eigenvalue for some other tensors.
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4.2. Computing the largest H-eigenpairs. In this subsection, we test our variational
principles by calculating the largest H-eigenvalues. We still use 100 random starting
guesses x0 = 2 ∗ rand(n, 1) − 1 to compute H-eigenvalues of A from Examples 4.2-4.4.
The same set of randomly initial vectors were used for each set of experiments. For H-
eigenvalue, the error is defined by ϵ̂ =

∥∥Ax̄m−1 − λx̄[m−1]
∥∥

2
, where x̄ = x/∥x∥2, and x is

the nonzero critical point obtained by L-BFGS at termination. In Tables 5-7, we still list
the comparison results for computing the largest H-eigenvalues of each tensor A in the
100 experiments.

Table 5. Results of computing H-eigenvalues of A from Example 4.2 (a = 1)

Alg. λ Occ. Error Time (sec.) Iter. FuncEvals
Han’s (2) 5.1812 73% 2.59e-06 0.45 24.19 39.81

SA,B 5.1812 75% 1.33e-08 0.40 23.18 33.42
LA,B 5.1812 89% 8.32e-09 0.43 25.79 39.36

Table 6. Results of computing H-eigenvalues of A from Example 4.3 (n = 5)

Alg. λ Occ. Error Time (sec.) Iter. FuncEvals
Han’s (2) 50.00 100% 1.78e-07 1.28 87.29 144.00

SA,B 50.00 100% 2.35e-07 1.16 87.93 129.79
LA,B 50.00 100% 3.33e-07 0.95 73.64 107.64

Table 7. Results of computing H-eigenvalues of A from Example 4.4 (a = 2)

Alg. λ Occ. Error Time (sec.) Iter. FuncEvals
Han’s (2) 8.0828 100% 2.19e-08 0.51 36.87 52.53

SA,B 8.0828 100% 3.26e-08 0.40 34.53 43.00
LA,B 8.0828 100% 2.03e-08 0.44 35.73 44.93

From Tables 5-7, we see that the formulations SA,B and LA,B are competitive with the
formulation Han’s (2) for finding the largest H-eigenvalues. For Examples 4.2-4.4, in terms
of the average number of objective function evaluations, the SA,B and LA,B are much less
than Han’s (2). Especially, for Examples 4.3 and 4.4, both of these three formulations
could find the maximum H-eigenvalue in all of the 100 experiments.

5. Conclusions. In this paper, we mainly proposed two optimization formulations for
generalized tensor eigenvalue problem and analyzed some variational characterizations for
the largest B-eigenvalue of even order weakly symmetric positive definite tensors. These
methods can be used to compute a B-eigenvalue (including Z-eigenvalue, H-eigenvalue and
D-eigenvalue) of an even order weakly symmetric positive definite tensor. Some numerical
experiments illustrated that our models are faster than Han’s models and could reach the
largest eigenpair with a higher probability. However, as previously mentioned, the local
optimization methods cannot guarantee finding a global maximum; hence, it is necessary
to develop a global optimization method for solving such problems in the future work.
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