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Abstract. Traditional unscented Kalman filter has some disadvantages such as slow
convergence speed, big time complexity and high filter error, which leads to unsatisfied
real-time requirement. What’s more, abnormal disturbances error can greatly affect the
accuracy and stability of unscented Kalman filter. In order to perfect those problems
and improve unscented Kalman filter, we put forward an improved ant colony algorithm
to improve the accuracy of unscented Kalman filter. We use ant colony algorithm with
grid division method to find the optimal combination of system error and measurement
error in unscented Kalman filter. It realizes the optimization for unscented Kalman
filter. Finally, experiment results show that the accuracy of unscented Kalman filter
based on improved ant colony algorithm is better than traditional unscented Kalman filter
algorithm.
Keywords: Unscented Kalman filter, Ant colony algorithm, Abnormal disturbances,
Grid division method

1. Introduction. Extended Kalman filter (EKF) [1-3] is very useful for solving nonlin-
ear system optimal state estimation problems as a common estimation method based on
linear approximation for Kalman filter theory. The main purpose of filtering is to be
able to forecast and estimate the state and the error statistics of nonlinear system in real
time. EKF is widely used in nonlinear filtering system, which is a typical representative
for function approximation nonlinear filtering. However, when the higher-order terms
of Taylor expansion of nonlinear function cannot be ignored, the linearized system will
produce large errors and even filter is not stable, the result is easy to diverge. So it
introduces unscented Kalman filter (UKF) [4,5]. UKF is based on unscented transforma-
tion (UT) and uses linear Kalman filter framework. However, traditional UKF cannot
control process gain matrix in time according to filtering effect system covariance. Thus
the estimated value of the filter cannot fast-track system status. To solve the problems of
traditional UKF, Liu and Yin [6] proposed an improved unscented Kalman filter using a
minimum skewness monomorphic sampling strategy to reduce the amount of calculation
of unscented Kalman filter and improve the accuracy of unscented Kalman filter. Also
Liu et al. [7] proposed an improved square root unscented Kalman filter (SRUKF) ac-
cording to square root unscented Kalman filter and backward smoothing algorithm. This
new scheme adopted equilateral triangle decomposition. Meanwhile, this new algorithm
expanded dimension for state vector and propagated process noise and observation noise
by nonlinear system. Kong et al. [8] presented that a modified square-root unscented
Kalman filter (SR-UKF) algorithm was employed in BDS and GPS conditions. However,
authors perfect UKF only in one aspect. Meng et al. [9] showed a novel approach using
the moving window method with AUKF and LSSVM to accurately establish the battery
model with limited initial training samples. Zhou et al. [10] described a new adaptive
filtering approach for nonlinear systems with additive noise. Based on the square-root
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unscented KF (SRUKF), traditional Maybeck’s estimator was modified and extended to
nonlinear systems. The square root of the process noise covariance matrix Q or that of
the measurement noise covariance matrix R was estimated straightforwardly.

In this paper, we propose a new UKF based on ant colony algorithm. This new method
contains two aspects: using grid division method to improve ant colony algorithm; using
the new ant colony to optimize the prediction and measurement error, which can reduce
the total error when adopting UKF filter. Finally, we conduct experiments to prove the
new scheme’s feasibility. The following is the structure of this paper. In Section 2, we
briefly introduce UKF algorithm. We detailedly show the new UKF based on improved
ant colony algorithm in Section 3. In Section 4, we make experiments to verify the new
scheme’s advantage. In Section 5, we give conclusions for this paper.

2. Overview of UKF Algorithm. UKF compensates the deficiency of the EKF algo-
rithm based on Kalman filter and UT [11,12]. It uses deterministic sampling strategy
to approximate nonlinear distribution. UKF algorithm can dispose the nonlinear non-
Gaussian system filtering problems with higher accuracy and faster calculation speed.
The following is the process of UKF algorithm.

Step 1. Initialization.

x̂0 = E [x0] (1)

P0 = E
[
(x0 − x̂0)(x0 − x̂0)

T
]

(2)

where x0 is initial state matrix, and P0 is initial covariance matrix. E is expectation
function.

Step 2. Calculating UT transformation and Sigma-Points.
Step 3. Time updating. It utilizes nonlinear state equation f(∗) and the Sigma-Points

obtained by Step 2 to convert Sigma-Points into xk+1|k. The state prediction value x̂k+1

and error covariance matrix P̂x,k+1 can be calculated by xk+1|k. Qk+1 is measurement
noise matrix. Wi is state matrix.

X i
k+1|k = f(xi

k) (3)

x̂k+1 =
2n∑
i=0

Wm
i X i

k+1|k (4)

P̂x,k+1 =
2n∑
i=0

W c
i

(
X i

k+1|k − x̂k+1

) (
X i

k+1|k − x̂k+1

)T
+ Qk+1 (5)

Step 4. Measurement updating. It utilizes nonlinear state equation h(∗) and the
Sigma-Points obtained by Step 2 to convert Sigma-Points into ξk+1|k. The measurement

prediction value ẑk+1 and error covariance matrix P̂z,k+1, P̂x,z can be calculated by ξk+1|k.

ξi
k+1|k = h(ξi

k) (6)

ẑk+1 =
2n∑
i=0

Wm
i ξi

k+1|k (7)

P̂z,k+1 =
2n∑
i=0

W c
i (ξi

k+1|k − ẑk+1)(ξ
i
k+1|k − ẑk+1)

T + Rk+1 (8)

P̂x,z =
2n∑
i=0

W c
i (X i

k+1|k − x̂k+1)(ξ
i
k+1|k − ẑk+1)

T (9)

Kk+1 = P̂x,z/P̂z,k+1 (10)

xk+1 = x̂k+1 + Kk+1(zk+1 − ẑk+1) (11)
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Pk+1 = Pk+1|k − Kk+1P̂z,k+1K
T
k+1 (12)

where Wm
i and W c

i are mean value and variance weight coefficient respectively. ẑk+1 is
observed estimation value. Rk+1 is measurement noise matrix. Kk+1 is Kalman gain
matrix.

3. The New UKF Based on Improved Ant Colony Algorithm. To reduce the
main factors affecting the accuracy of UKF and improve the efficiency of traditional
UKF algorithm, we introduce the improved ant colony algorithm into UKF. In new UKF
algorithm, we reduce the error of system estimation and measurement by ant colony with
grid division method. New optimized results will be applied into UKF, which greatly
reduces the filter error.

3.1. Improved ant colony algorithm based on grid partitioning strategy. Ant
colony algorithm [13-15] is an intelligence algorithm by simulating ant colony foraging
behavior, which uses the bionic principle to simulate ant looking for food, and then
finds optimal path. Ant colony algorithm also can be used to solve the continuous space
optimization. Using an improved ant colony algorithm based on grid partitioning strategy
finds optimal solutions of system error and measurement error in continuous space, which
makes Kalman prediction effect approximate optimal.

Firstly, it needs to determine the range of variable (i.e., size of the continuous domain),
and it makes grid partitioning for this space. It should determine the lower xilower and
upper bounds xiupper of each component xi in the solution x = (x1, x2, . . . , xn)T and divide
xi into N same blocks written as:

hi = (xiupper − xilower)/N (13)

In n-dimension space, grid is composed of nN +1 points. In this model, each ant selects
a point from the first row to the n-th row respectively in divided grim to form a solution.
So m ants can constitute m solutions in one iteration. Ant chooses the point according
to pheromone, and selection probability is:

pij =
τij(t)

τi0(t) + τi1(t) + . . . + τiN(t)
(14)

where τij(t) is size of pheromone of coordinate (i, j). t is running time of algorithm. The
process of ant constructing an intact solution can be called a moment. If ant selects a
point at the i-th row and j-column, it denotes that the j-th value in xi is selected, and

xij = xilower + jhi (15)

Set the total sum of pheromone in every path as 1. Initializing initial value of pheromone,
it will be split averagely on each point.

τij(0) = 1/(N + 1) (16)

Meanwhile,

pij = τij(t) (17)

Namely, the probability of ant selecting each point is equal to the size of pheromone in
this point, which provides convenience for the algorithm.

When updating pheromone, we put the m solution into objective function to solve the
function value, and then we can determine a global optimal solution Sgb. Finally, we
update pheromone of every point in each row,

τij(t + 1) = (1 − ρ)τij(t) + ∆τij(t + m)

∆τij(t + 1) = ρ
(18)
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where ρ is pheromone volatilization coefficient. (1 − ρ)τij(t) is pheromone volatilization
process. ∆τij(t + m) is pheromone strengthen process only acting on the points in opti-
mal solution Sgb path. Except Sgb path, other pheromones only carry out volatilization
process.

When the iteration number of algorithm reaches at the maximum iteration number, it
needs to find the corresponding column number (c1, c2, . . . , cn) of the maximum points
in each row of the matrix formed by τij. Then it shrinks the range of variable. So after
updating, the range of component xi is,

xilower =

{
xilower + (ci − ∆)hi, xilower + (ci − ∆)hi ≥ xi0;

xi0, xilower + (ci − ∆)hi < xi0

(19)

xiupper =

{
xilower + (ci + ∆)hi, xilower + (ci + ∆)hi ≤ xiN ;

xiN , xilower + (ci − ∆)hi > xiN

(20)

where ∆ is the shrinking degree of variable range.
After variable updating, it makes grid partitioning for continuous domain again accord-

ing to (13) and initializes pheromone according to (16). In the shrunken space, it searches
optimal solution, and repeats this process until satisfying accuracy requirement.

3.2. Process of UKF based on improved ant colony algorithm.
Step 1. Solving upper and lower values of system estimation error and measurement

error. When we compute maximum values of system estimation error, we get the max-
imum and minimum value in each iteration. Then we calculate the extremum variance.
Similarly, when estimating the maximum measurement error, assuming that there is no
system error, measured data are in reasonable frequency range. We select the two biggest
values as loop sequence respectively from the forward bias and reverse bias, and find the
extremum variance. Set minimum value of the two error parameters as 0, namely no
system error and measurement error.

Step 2. Initializing parameters of UKF and ant colony algorithm. Set x̂0 = P0 = 1,
Q1 = R1 = 0. Parameters in ant colony algorithm are as in Reference [16]. And the
objective function is the error square sum of UKF system prediction and measurement.

Step 3. Running ant colony algorithm. It searches the optimal solution of system
estimation error and measurement error in the known upper and lower value space. Then
it gets mean value.

Step 4. We apply the optimal value into state prediction value and error covariance
matrix of UKF. Finally, it improves the filter accuracy.

4. Simulation Experiments. We make experiments under MATLAB platform testing
object movement in indoor. Using ant colony algorithm (ACO) gets the optimal speed
error value as Table 1 within 450s.

Table 1. Optimal speed error value based on ACO

Parameter 0-150s 151s-300s 301s-400s
System estimation error 0.08m/s 0.06m/s 0.07m/s

Measurement error 0.11m/s 0.10m/s 0.12m/s

We solve the mean value of the two errors respectively: system estimation error 0.07m/s,
and measurement error 0.11m/s. Then we substitute them into UKF. In order to further
verify the advantage of our new UKF, we make a comparison with traditional UKF,
minimum skewness sampling UKF (MSUKF) [5] and the improved UKF based on ACO
(ACO-UKF).
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Figure 1. UKF speed error

Figure 2. MSUKF speed error

Figure 3. ACO-UKF speed error

Figure 4. Error covariance with different methods
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The comparison results are as Figures 1-3. From Figure 1, we can know that the
estimation error of UKF is big and filtering measurement error is not reliable by the
effect of dynamic model abnormal disturbance error. Figure 2 represents that when using
sampling strategy to improve UKF, the accuracy of Figure 2 is better than Figure 1 and
it can better approximate the mapping function of nonlinear dynamic model. The error
of both is smaller than that of UKF. Through comparing Figure 2 and Figure 3, we can
conduct a conclusion that the error and filter accuracy based on ant colony algorithm
is prior to the improved sampling strategy and adaptive factor. In Figure 3, estimation
error of ACO-UKF reaches the biggest value nearly 0.055 between 0s and 50s. After 50s,
though the error changes range from 0.05 to 0.03, it will get convergence at 300s. It is a
short time. As well as the measurement error, it has a very short convergence time. The
two errors with ACO-UKF are less than those of UKF or MSUKF. Figure 4 shows that
the new proposed method has the minimum covariance error. The ranges of covariance
error with UKF, MSUKF and ACO-UKF methods are [0.0151, 0.0170], [0.0145, 0.0162]
and [0.0149, 0.0158] respectively. So the covariance error is more accepted by using the
improved UKF based on ant colony algorithm. The new scheme not only solves the
shortcomings of traditional UKF but introduces an improved ant colony which reduces
the influence of dynamic model prediction error.

5. Conclusions. This paper proposes a new ant colony algorithm used for UKF. We
use grid division method to improve ant colony to perfect the system prediction error
and measurement error in UKF. The new ant colony UKF has a fast convergence. In
addition, it has a significant effect on filter process and can better approximate the map-
ping function of nonlinear dynamics model. Through experiments, we illustrate that it
is feasible in practical applications. In the future, we will evaluate our scheme with the
existing improved algorithms and study new intelligence algorithms to improve UKF or
EKF algorithm.
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