
ICIC Express Letters
Part B: Applications ICIC International c⃝2016 ISSN 2185-2766
Volume 7, Number 11, November 2016 pp. 2405–2410

AUTOMATIC AND EFFICIENT FALSE SHARING AVOIDER
FOR MULTI-THREADED PROGRAMS

Dongying Zheng

Innovation and Entrepreneurship College
Weifang University of Science and Technology

No. 1299, Gold Street, Shouguang 262700, P. R. China
Zdy7817@163.com

Received May 2016; accepted August 2016

Abstract. False sharing is a representative performance bug in multi-threaded pro-
grams that causes severe slowdown. It implicitly impacts performance and it is very hard
to detect. Unlike previous methods which are focused on detecting it and helping pro-
grammers to fix it manually, this paper proposes a runtime system that can eliminate
false sharing transparently at runtime. The key idea of this paper is to give each thread
a private copy of shared data and make them just operate on their private data as long
as possible. Thus threads will not conflict on accessing shared data. Experimental results
show that our method can achieve speedup of 1-600%, showing great potential to tackle
the performance problem introduced by false sharing.
Keywords: False sharing, Multi-threaded program, Eliminate, Private copy

1. Introduction. Multi-threaded program is becoming increasingly prevalent to fully
leverage the hardware resources in today’s fast-developing multi-core architectures. How-
ever, it is a challenge to develop multi-threaded programs. Not only is the program
error-prone and hard to debug [1], but also it is very difficult to scale [1] on many cores.
A lot of studies [2] have been proposed to try to eliminate bugs and thus enhance the
reliability of multi-threaded programs with bug-detection methods. However, there is an-
other kind of bug which attracts less attention. This kind of bug will not cause program to
crash but will hugely hurt performance and thus we call this kind of bug the performance
bug [3].

False sharing [1] is a representative performance bug in multi-threaded programs. It will
cause severe contention among threads and thus limit the scalability and performance.
False sharing happens in the situation that, for example, if two threads A and B have
their data a and b settled in the same cache line, then thread A’s accesses to data a will
possibly invalidate the cache line in thread B’s (the core thread B is running on) private
cache and cause performance loss to thread B on further accessing data b. Well, thread
B’s further accesses on data b will in turn invalidate the cache line in thread A’s private
cache and cause performance loss to thread A on accessing data a. In this situation, the
two threads are accessing different data but they cause severe contention in cache, leading
to unnecessary performance loss. It has been demonstrated in previous work [1] that in
some severe situations, the false sharing problem may cause multi-thread programs even
slower than its single-threaded counterparts.

Previous work [4,9] to tackle false sharing mainly focuses on detecting false sharing at
runtime and producing reports to help programmers fix the bug manually, which involves
considerable human effort. Unlike previous work [9], we propose a total automatic runtime
system that avoids or eliminates false sharing directly at runtime. Any multi-threaded
program can run on our system without any modification to gain the performance benefit
of running with less false sharing. Our key idea is based on the software transactional

2405



2406 D. ZHENG

memory (STM) system that we give each thread a private copy of global shared data
and commit the updates to the global data at certain points. Threads do not conflict
with each other when operating on their private copy and thus we avoid false sharing
totally. Based on the initial idea, two problems remain to be settled: (1) when to commit
the update of private copy to global shared data and (2) how to reduce the overhead of
making private copy and redirect every access to the private copy. We will deal with the
two problems in Section 3.

Some dynamic memory allocators [5] for multi-threaded programs tried to achieve the
same goal with us. They usually give every thread a private heap to make dynamic
memory allocation and thus the shared data allocated by different threads do not settle
in the same cache line. However, there may be some data that are allocated by a thread
and used by other threads and this situation may still cause false sharing. Moreover, we
argue that the memory allocator work is compatible with our work and can be combined
with our work to achieve better result.

The rest of this paper is organized as follows. Section 2 introduces the problem of false
sharing. We give our dynamic false sharing avoider in Section 3. We show experimental
results in Section 4 and we make conclusion in Section 5.

2. Performance Slowdown Caused by False Sharing. Figure 1(a) shows an example
of code that introduces false sharing. The global variables a and b are shared by threads
and they are in the same cache line. Then the two threads perform a serial of calculations
on the two variables respectively. Thread 1 only operates on a and thread 2 only operates
on b. However, this will introduce great slowdown due to the severe invalidation of the
cache lines in the cores for thread 1 and thread 2.

Figure 1(b) shows a simple fix of this problem where we introduce an array to separate
a and b to make them located in different cache lines. The accesses to a and b from thread
1 and thread 2 will then never conflict with each other in cache. Through this simple fix,
we can achieve an obvious speedup of nearly 3X (FIX-manually shown in Figure 2), which
well demonstrates that false sharing is a serious performance problem in multi-threaded
programs. Furthermore, we extend this example to 4 or 8 threads and Figure 2 shows the
performance slowdown caused by false sharing.

Figure 1. Sample of false sharing and fixed version



ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.7, NO.11, 2016 2407

Figure 2. Performance comparison of false sharing and fixed versions
(baseline is the normal execution. Fix-manually is to fix the false sharing
problem manually all by programmers. Fix-auto is the proposed method in
this paper.)

Figure 3. Instrumentation

3. False Sharing Avoider. We base our work on the idea of giving each thread a
private copy of shared data and let them operate on their private copy with minimum
inter-thread communications. Thus threads get less chance to conflict with each other.
First, we rely on compiler instrumentation [6] to instrument every access at compile time.
Figure 3 shows our method. Figure 3(a) is the original code with false sharing while
Figure 3(b) is the optimized code. The optimized code is automatically generated by
our compiler framework (we leverage the open source compiler framework LLVM [6,13]
to insert instructions automatically into the code, see details later. Also, there are many
compiler tools such as the Intel C++ STM [10,11] that supports automatic software
transactional memory that can be used to achieve this).



2408 D. ZHENG

In the optimized code shown in Figure 3, we mainly inserted some function calls which
are the same as traditional STM (software transactional memory) interface [7]. Then our
system executes as follows (which is pretty much like traditional STM system [7]). When
thread 1 meets TM begin(), it will initialize a private buffer used as private copy space.
Then the TM read() will create a private copy of the variable a in the private buffer
and serve all the subsequent accesses (TM read() and TM write()) for thread 1. Then at
TM end() time the thread 1 will commit the private copy a to the global shared variable
a. Thread 2 performs the same way. In this way we actually separate the variables a
and b by introducing private copies for them. False sharing will only happen once at the
commit time. The performance is shown in Figure 2 as FIX-auto. The overhead of our
mechanism is the memory access redirection on every TM read() or TM write() but for
this we can automatically eliminate false sharing.

The above example shows the basic idea of our method. However, two problems re-
main: (1) where to insert TM begin() and especially TM end(), which determines when
to update the global shared data; (2) instrumenting (redirecting) all memory accesses [6]
will introduce huge overhead, which may shadow the benefit we gain from eliminating
false sharing.

In order to solve the two problems, we propose to focus our method on smaller scope:
the loops, instead of the whole program. The main reason for this is that intense memory
accesses usually happen in loops [12], which means intense false sharing will only happen
in loops. Thus in order to get best performance, we just need to focus on loops. Moreover,
instrumenting only memory accesses in loops will reduce a lot of overhead.

Figure 4 shows our method. Firstly, we insert TM begin() and TM end() for each loop.
We leverage the LLVM tool [6] for loop identification at compile time. Thus basically, each
loop forms a transaction for each thread. Moreover, thread may perform synchronization
operations (hold lock or release lock) to access certain shared data. At synchronization
time, a thread may want to get the latest value of a shared data which is being updated
by another thread. Thus, in order to guarantee this correctness, we insert TM end() at
every synchronization point to make thread commit the latest value to the global shared
data. By doing this we can guarantee the correctness of the program and this has been
discussed in a lot of previous studies [8].

Figure 4. Loop-based and lock-based update



ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.7, NO.11, 2016 2409

As shown in Figure 4, if a loop contains synchronization operations (e.g., lock), we
have to insert additional TM begin() and TM end() and force the thread to commit its
latest value. This may introduce huge overhead. We have made an optimization on this
that we analyze each loop at compile time to see if it contains lock operation or not. If
a loop contains lock operation, we prefer ignoring the loop for our false sharing avoiding.
This may leave some false sharing in the loop un-eliminated but we could achieve better
performance on avoiding tacking synchronization operations (e.g., lock).

4. Experimental Results. This paper proposes a system that could eliminate the false
sharing bugs in multi-threaded programs transparently at runtime and thus achieve better
performance. In experiments we mainly test and show its ability to achieve speedup
compared with the normal execution. Moreover, we also show that our work can be
combined with previous memory-allocator-based method (here we choose to use Hoard
[5] which is a memory allocator specialized for multi-threaded programs) to achieve further
improvement.

The benchmarks we choose are from the benchmark suit Parsec and Phoenix which
have been reported to have false sharing problems (see Table 1). We also choose some
benchmarks that contain no false sharing problems to show the pure overhead that we
will introduce. Our experimental platform is a 4-core Intel server running Linux 3.11 with
16GB of physical memory. The LLVM compiler framework we used is of version 2.9. All
benchmarks are executed with 4 threads with default input. We execute each benchmark
for 5 times and report the mean value for each test.

Table 1. Benchmarks

Benchmark Previously reported to have false sharing [1,9]
kmeans N
dedup N

swaption N
linear regression Y
reverse index Y
streamcluster Y
word count Y

The experimental results are shown in Figure 5. First for the benchmark kmeans, dedup,
and swaption which have no false sharing problem, our method (FIX-auto) introduces pure
overhead of 5-10%, which is due to its redirecting accesses in loops. For the benchmark
linear regression, our method achieves a huge speedup of more than 6X, which means
the benchmark is greatly bothered by false sharing problem. For other benchmarks, our
method can gain 2-9% performance benefit. Moreover, when our method is combined
with previous memory-allocator-based method (here we use Hoard [5]), we can achieve
further improvement for all benchmarks. The above results show the great potential of
our work to tackle false sharing problem in multi-threaded programs.

5. Conclusion. This paper introduces a runtime system that can eliminate false sharing
in multi-threaded programs to achieve better performance. Unlike previous studies which
are focused on detecting false sharing, our runtime system eliminates it automatically and
transparently at runtime. The key idea is to give each thread a private copy of shared
data so that threads could operate on their private copies without any contention on
cache lines. Experimental results show that our method could gain performance benefit
of 1-600%, showing great potential to speedup multi-threaded programs. Future work
mainly includes reducing the overhead of instrumenting and redirecting memory accesses.



2410 D. ZHENG

Figure 5. Experimental results

REFERENCES

[1] T. Liu and E. D. Berger, SHERIFF: Precise detection and automatic mitigation of false sharing,
ACM SIGPLAN Notices, vol.46, no.10, pp.3-18, 2011.

[2] Q. Gao and M. Xu, Detecting Resource Deadlocks in Multi-Threaded Programs by Controlling Sched-
uling in Replay, United States Patent 9052967, 2015.

[3] O. Olivo, I. Dillig and C. Lin, Static detection of asymptotic performance bugs in collection traversals,
Proc. of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion, 2015.

[4] M. A. Spear, Whose Cache Line Is It Anyway: Automated Detection of False Sharing, 2015.
[5] E. D. Berger et al., Hoard: A scalable memory allocator for multithreaded applications, ACM

SIGPLAN Notices, vol.34, no.5, pp.117-128, 2000.
[6] C. Lattner and V. Adve, LLVM: A compilation framework for lifelong program analysis & transfor-

mation, IEEE International Symposium on Code Generation and Optimization, 2004.
[7] A. Ghosh and R. Chaki, Implementing software transactional memory using STM haskell, Advanced

Computing and Systems for Security, Springer India, pp.235-248, 2016.
[8] T. Liu, C. Curtsinger and E. D. Berger, Dthreads: Efficient deterministic multithreading, Proc. of

the 23rd ACM Symposium on Operating Systems Principles, 2011.
[9] L. Lyu, FS-D: A high efficient false sharing detector for multi-threaded programs, ICIC Express

Letters, vol.9, no.8, pp.2205-2210, 2015.
[10] A. Dragojevic, N. Yang and A.-R. Adl-Tabatabai, Optimizing transactions for captured memory,

Proc. of the 21st ACM Annual Symposium on Parallelism in Algorithms and Architectures, 2009.
[11] V. Ying et al., Dynamic binary translation and optimization of legacy library code in an STM

compilation environment, Proc. of the Workshop on Binary Instrumentation and Applications, 2006.
[12] E. P. Markatos and T. J. LeBlanc, Using processor affinity in loop scheduling on shared-memory

multiprocessors, IEEE Trans. Parallel and Distributed Systems, vol.5, no.4, pp.379-400, 1994.
[13] S. Falke, F. Merz and C. Sinz, LLBMC: Improved bounded model checking of c programs using

LLVM, International Conference on Tools and Algorithms for the Construction and Analysis of
Systems, Springer Berlin Heidelberg, 2013.


