
ICIC Express Letters
Part B: Applications ICIC International c⃝2016 ISSN 2185-2766
Volume 7, Number 11, November 2016 pp. 2397–2403

A HYBRID COLLABORATIVE FILTERING ALGORITHM ON SPARK

Weiwei Xing, Wentao Zhou and Weidong Wang

School of Software Engineering
Beijing Jiaotong University

No. 3, Shangyuancun, Haidian District, Beijing 100044, P. R. China
wtzhou@bjtu.edu.cn

Received May 2016; accepted August 2016

Abstract. Recommendation algorithms are well recognized as the convenient and flex-
ible way of user’s interest discovery in e-commerce industry. As a branch of recom-
mendation systems, collaborative filtering is a classical and widely used technique, which
provides personalized recommendations according to users’ requirements. However, it
may suffer from problem of data sparsity, which commonly impacts on users’ preference
predictions. To address this problem, in this paper, we propose a novel hybrid collabo-
rative filtering algorithm using MovieLens dataset. The algorithm contains three steps.
1) We employ the co-clustering with augmented matrix model to get user clusters and
movie clusters simultaneously. 2) Users’ (movies’) proper similar user (movie) collec-
tions are filtered from appropriate user (movie) clusters using Top-K strategy. 3) Based
on the above similar collections, the user-based and movie-based methods are adopted
respectively, to obtain individual predictions for an unknown movie’s rating, and then
we combine these two predictions via a linear combination for accuracy improvement.
We implement our algorithm on a Spark platform for good scalability. Experiments show
that the proposed algorithm is more robust against data sparsity and scalability, and it
achieves better recommendations than traditional recommendation algorithms.
Keywords: Recommendation system, Collaborative filtering, Information theory, Co-
clustering, Spark

1. Introduction. Collaborative filtering is widely used in many commercial recommen-
dation systems. However, its widespread applications have encountered serious challenges,
such as sparsity and scalability [1]. The main reason for the sparsity problem is a lack of
valid data. Meanwhile, the main concern for the scalability problem is the multi-cluster
computation.

In order to solve the sparsity problem, many methods (e.g., matrix factorization, clus-
tering and co-clustering) are raised in the past years. Clustering is useful in grouping
together similar objects as a common data mining technique. However, most of the clus-
ter methods focus on one-way cluster. Dhillon et al. proposed a new clustering method
called information-theoretic co-clustering (ITCC) [2], which was to optimize the objective
function based on the loss of mutual information between clustered random variables,
before and after co-clustering. Based on ITCC, Liang and Leng proposed a novel collab-
orative filtering method [3], which applied ITCC to simultaneously cluster the rows and
columns of the user-item rating matrix, and subsequently computed the cluster prefer-
ence similarity between users/items. It showed that co-clustering collaborating filtering
method was better than one-way clustering method. The co-clustering with augmented
data matrices (CCAM) algorithm is another method to handle sparse data [4]. The
CCAM is to minimize the mutual information loss of a linear combination of rating data
and content-based information, where the mutual information can measure the depen-
dency between two objects among those matrices. Wu et al. combined CCAM with
recommendation algorithm and showed that it could reduce the error of prediction and

2397

2398 W. XING, W. ZHOU AND W. WANG

sparsity problem [5]. They also realized CCAM algorithm’s parallel version in a Hadoop
cluster [6]. Although CCAM solved the problem of sparsity, it was too slow because of
the I/O operations on HDFS.

In this paper, we propose a novel hybrid collaborative filtering algorithm based on co-
clustering with augmented matrix (CCAM) in a Spark cluster, named S-CCAM. Firstly,
we apply CCAM to simultaneously cluster the rows and columns of the user-movie rating
matrix as well as movie feature matrix and user profile matrix. Secondly, users’ (movies’)
proper similar user (movie) collections are filtered from appropriate user (movie) clusters
using Top-K strategy. Finally, based on users’ (movies’) similar user (movie) collections,
we compute the predictions of user-based method and item-based method respectively,
and then fuse these two predictions via a linear combination. The contribution of this
paper is twofolds:

1) Information theory is used to calculate the distance between a single user (movie)
and a user (movie) cluster for similarity calculation.

2) The proposed algorithm can be implemented on a Spark platform, which makes it
faster than other traditional algorithms and meanwhile achieves higher scalability.

The rest of this paper is organized as follows. Section 2 presents the details of the
proposed algorithm. The experiments and the conclusions are presented in Section 3 and
Section 4, respectively.

2. The Proposed Algorithm. Traditional collaborative filtering algorithms often con-
front the problem of sparsity and scalability. To overcome these problems, we propose a
novel hybrid collaborative filtering algorithm based on CCAM in a Spark cluster, named
S-CCAM, since the CCAM is a co-clustering-based algorithm that can effectively solve
the problem of sparsity. Currently, in the Big Data computing field, for the sake of the
computation speed, CCAM has been well implemented on Hadoop [7]. However, it may
have a barrier on the frequent I/O operation and data locality when handling a great
number of intermediate results. Therefore, we employ the Spark technique [8] to further
improve the CCAM for time saving and scalability. Compared with the CCAM algorithm
on Hadoop, the proposed S-CCAM has better performance on processing speed, which
will be proved in later experiment section. The S-CCAM algorithm is mainly divided into
three steps: 1) co-clustering; 2) similarity calculation; and 3) prediction.

2.1. Co-clustering. The first step of S-CCAM algorithm is co-clustering, to get item
clusters and user clusters, simultaneously. The MovieLens dataset consists of three input
data, the user-movie rating matrix, user profile matrix and the movie feature matrix.

Firstly, these three matrices are normalized into f(I, U), h(U,L) and g(I, S) respec-
tively. Then CCAM is used to get user clusters and movie clusters simultaneously. The

goal of CCAM is to find a co-clustering
(
Î , Û

)
that minimizes:

q
(
Î , Û

)
= D

(
f(I, U)

∥∥f̂(I, U)
)

+ D
(
g(I, S)

∥∥ĝ(I, S)
)

+ D
(
h(U,L)

∥∥ĥ(U,L)
)

(1)

where D(x ∥ y) means the K-L divergence between x and y.
The co-clustering optimization task can be solved using the following update rules:

C
(t+1)
I (i) = arg min

î

[
f(i)D

(
f(u | i)

∥∥f̂ (t)
(
u | î

))
+ λ · g(i)D

(
g(s | i)

∥∥ĝ(t)
(
s | î

))]
(2)

C
(t+2)
U (u) = arg min

û

[
f(u)D

(
f(i | u)

∥∥f̂ (t+1)(i | û)
)

+φ · h(u)D
(
h(l | u)

∥∥ĥ(t+1) (l | û)
)] (3)

For each row (movie), we use Formula (2) to find its new cluster index, and then the

probability distribution f̂ (t+1)(I, U) and ĝ(t+1)(I, S) are updated. After this, for each

ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.7, NO.11, 2016 2399

column (user), we use formula (3) to find its new cluster index, and then the probability

distribution f̂ (t+2)(I, U) and ĥ(t+2)(U,L) are updated. The iteration process is terminated

when the result of q(t)
(
Î , Û

)
− q(t+2)

(
Î , Û

)
is convergent. Spark is very suitable for

this iteration process, because the intermediate results stored on memory will be used
frequently. The function groupByKey() in Spark can send the information that contains
the same key to the same nodes, which is very convenient to find the optimal cluster index
for movie or user. After the co-clustering process, we obtain a set of movie clusters and
a set of user clusters, we save the result in movie cluster RDD with formatter (movieID,
movieClusterID) and user cluster RDD with formatter (userID, userGroupID). Wu et al.
proved that the above iteration process could monotonically decrease the loss of mutual
information [4].

2.2. Similarity calculation. The idea of collaboration filtering is that people with sim-
ilar preferences would rate items similarly, so we need to get users’ and movies’ similarity.
In order to get higher accuracy, we first define the distance between a movie and a movie
cluster as well as a user and a user cluster. We use the KL-divergence that Formula (1)
used to define the above two distances:

dist
(
i, î

)
= f(i)D

(
f(u | i)

∥∥∥f̂
(
u | î

))
+ λ · g(i)D

(
g(s | i)

∥∥∥ĝ
(
s | î

))
(4)

dist (u, û) = f(u)D
(
f(i | u)

∥∥∥f̂ (i | û)
)

+ φ · h(u)D
(
h(l | u)

∥∥∥ĥ (l | û)
)

(5)

To calculate the distance between a movie and a movie cluster, user-movie rating file,
movie feature file and movie cluster RDD are used by Formula (4) and the results are
saved in movie-movie-cluster RDD with formatter (movieID, movieClusterID, and dist).
The same way is used to calculate the distance between a user and a user cluster by
Formula (5) and the results are saved in user-user-cluster RDD with formatter (userID,
userClusterID, and dist).

Then we calculate the movies’ and users’ similarities using cosine similarity defined as:

sim(i1, i2) =

∑
u∈Ui1,i2

(Ru,i1 × Ru,i2)√∑
u∈Ui1,i2

R2
u,i1

×
√∑

u∈Ui1,i2
R2

u,i2

(6)

sim(u1, u2) =

∑
i∈Iu1,u2

(Ru1,i × Ru2,i)√∑
i∈Iu1,u2

R2
u1,i ×

√∑
i∈Iu1,u2

R2
u2,i

(7)

where Ru,i is the rating of user u on movie i. Given a specified movie, we pick up the
top K1 nearest movie clusters, and from which we use Formula (6) to select the top
k1 nearest movie neighbors. The output of this step is movie-sim RDD with formatter
(movieID, List(movieID, similarity)). We use the same method to get the user-sim RDD
with formatter (userID, List(userID, similarity)). We make use of groupByKey() and
sortByKey() functions in Spark to parallel our algorithm and get higher accuracy as
much as possible.

2.3. Prediction. The purpose of prediction is to predict the possible rating of a given
user on a given movie. For item-based method, we use movie-sim RDD and user-movie
rating file to get item-based-pre RDD with formatter (userID, movieID, and p-rating) by

P
(i)
u,i = R̄i +

∑
j∈s(i)

(
sim(i, j) ×

(
Ru,j − R̄j

))∑
j∈s(i) |sim(i, j)|

(8)

where R̄i and R̄j mean the average rating on movie i and movie j. And for user-based
method, we use user-sim RDD and user-movie rating file to get user-based-pre RDD with

2400 W. XING, W. ZHOU AND W. WANG

formatter (userID, movieID, and p-rating) by

P
(u)
u,i = R̄u +

∑
n∈s(u)

(
sim(u, n) ×

(
Rn,i − R̄n

))∑
n∈s(u) |sim(u, n)|

(9)

where R̄u and R̄n mean the average rating of user u and user n.
Relying on item-based prediction or user-based prediction only is undesirable, espe-

cially when the ratings from these two predictions are often not available. To improve
the accuracy of prediction, we fuse item-based and user-based predictions. By linearly
combining the previous two types of predictions, we obtain the final prediction result as

Pu,i = α · P (i)
u,i + (1 − α) · P (u)

u,i (0 ≤ α ≤ 1) (10)

where α determines the relative importance of the item-based and user-based predictions.

3. Experiment Results.

3.1. Dataset. To evaluate the proposed algorithm, we adopt Movielens dataset provided
by GroupLens Research. Two datasets, 100K and 1M datasets with user-movie rating
data, as well as movie features and user profiles, are available to be used. For 100K
dataset, the main user-movie rating matrix comprises of 100000 ratings records (scaled
from 1 to 5) provided by 943 users on 1682 movies. As for 1M dataset, there are 6040 users
and 3676 movies with 1 million ratings. In order to perform the five-fold cross validation,
we divide each of the datasets into 80% training set and 20% testing set.

3.2. Evaluation metric. To evaluate the accuracy of our proposed algorithm, we adopt
Mean Absolute Error (MAE). MAE is defined as

MAE =

∑N
i=1 |pi − ri|

|N |
(11)

where N denotes the number of ratings, and pi is the predicted rating whereas ri is the
real rating. A smaller value of MAE means a better result.

3.3. Parameter tuning. For many hybrid recommendation systems, parameter tuning
is an unavoidable issue that we need to deal with. The CCAM model, which makes use
of content-based technique, has two parameters λ and φ that control item features and
user profiles. We also need to know the number of item clusters s and the number of
user groups t, and usually we set s = t. For prediction, we need to specify the number
of nearest items k1 in K1 nearest item clusters and the number of nearest users k2 in K2

nearest user groups. In our algorithm, we set k1 = k2 = 20 and K1 = K2 = 5. We also
need to specify the effect of fusion coefficient α.

3.3.1. Impact of cluster size s. Different clustering algorithms have their own optimal
parameters of cluster size s. Therefore, we tune the cluster size s for K-means, S-ITCC
and S-CCAM under s = 5, 10, 20 and 40. For S-CCAM, we set λ = 0.01 and φ = 0.01.
Figures 1(a) and 1(b) show the MAEs of different clustering algorithms on ML-100K and
ML-1M. From the figures, we can see when the cluster size s ranges from 10 to 20 for all
algorithms, the MAEs are lower. So we choose s to be 10 for all algorithms on ML-100K
and ML-1M in the following experiments.

ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.7, NO.11, 2016 2401

Figure 1. Impact of cluster size s on ML-100K and ML-1M

Figure 2. Impact of λ, φ and α on ML-100K

Figure 3. Impact of λ, φ and α on ML-1M

3.3.2. Impact of augmented matrix weight λ and φ. The parameter λ for item feature
weight and φ for user profile weight are used to control the influence of augmented ma-
trices. In our algorithm, we first set cluster size s = 10 and user profile weight φ = 0.1
when tuning item feature weight λ from 0 to 0.1 with step size 0.01. As we can see from
Figures 2(a) and 3(a), the optimal λ for ML-100K is 0.03 and the best setting for ML-1M
is λ = 0.02. Then we use the same way to tune φ. As shown in Figures 2(b) and 3(b),
we find the best setting for both ML-100K and ML-1M is φ = 0.01; therefore, we use
φ = 0.01 in the following experiments.

3.3.3. Effect of fusion coefficient α tuning. As described in Section 2, the parameter α
determines the relative importance of the item-based and user-based predictions. We
conduct experiments to identify the optimal fusion coefficient. We set s = 10, λ = 0.03
and φ = 0.01 for ML-100K, and meanwhile we set s = 10, λ = 0.02 and φ = 0.01 for
ML-1M. Our results are shown in Figures 2(c) and 3(c). In the case of ML-100K dataset,
the prediction accuracy increases as we increase α from 0 to 0.6; after 0.6, it becomes

2402 W. XING, W. ZHOU AND W. WANG

worse. In the case of ML-1M dataset, the accuracy is improved as we increase α from
0 to 0.7. So it proves that the combined prediction can be more accurate than the pure
rating prediction.

3.4. Performance comparison. In addition to the three clustering algorithms (K-
Means, S-ITCC, and S-CCAM), we also compare our algorithm with pure item-based
collaborative filtering and pure user-based collaborative filtering. Figure 4 shows the per-
formance comparison on ML-100K and ML-1M, respectively. We observe that S-CCAM
outperforms all the other algorithms on both ML-100K and ML-1M datasets.

3.5. Scalability testing. In this part, we evaluate the scalability of our algorithm on
Spark platform. Our Spark cluster is composed of 4 computers, and each computer has
4-core CPU and 8GB memory. In this experiment, we use the ML-1M dataset. Figure 5
gives the scalability among different computers in terms of speed-up. The speed-up value
is calculated based on the run-time on n computers Tn divided by that on one computer
T1.

Speed-up =
T1

Tn

(12)

As shown in Figure 5, the scalability performs well when the number of computers is
greater than two.

Figure 4. Result compar-
ison on IBCF, UBCF, K-
Means, S-ITCC and S-CCAM

Figure 5. Speed-up com-
parison on K-Means, S-ITCC
and S-CCAM

4. Conclusions. In this paper, we propose a novel hybrid collaborative filtering algo-
rithm in a Spark cluster, which can solve the problem of sparsity and scalability. The
algorithm is composed of three steps: co-clustering, similarity calculation and prediction.
Experiments show that the proposed algorithm can improve the accuracy of recommen-
dation on sparse datasets. Besides, it has obvious advantages in speed and scalability
because of a large number of iteration processes. In the future, we will investigate better
co-clustering models and improve the performance of the proposed algorithm further.

Acknowledgment. This work is supported in part by the National Natural Science
Foundation of China (Nos. 61100143, 61272353, 61370128, and 61428201), the Program
for New Century Excellent Talents in University (NCET-13-0659), the Beijing Higher
Education Young Elite Teacher Project (YETP0583), and the Fundamental Research
Funds for the Central Universities (2014JBZ004).

ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.7, NO.11, 2016 2403

REFERENCES

[1] A. Kumar and A. Sharma, Alleviating sparsity and scalability issues in collaborative filtering based
recommender systems, Proc. of the International Conference on Frontiers of Intelligent Computing:
Theory and Applications, 2013.

[2] I. S. Dhillon, S. Mallela and D. S. Modha, Information-theoretic co-clustering, Proc. of the 9th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.89-98, 2003.

[3] C. Liang and Y. Leng, Collaborative filtering based on information-theoretic co-clustering, Interna-
tional Journal of Systems Science, vol.45, no.3, pp.589-597, 2013.

[4] M.-L. Wu, C.-H. Chang and R.-Z. Liu, Co-clustering with augmented matrix, Applied Intelligence,
vol.39, no.1, pp.153-164, 2013.

[5] M.-L. Wu, C.-H. Chang and R.-Z. Liu, Integrating content-based filtering with collaborative filter-
ing using co-clustering with augmented matrices, Expert Systems with Applications, vol.41, no.6,
pp.2754-2761, 2014.

[6] M.-L. Wu and C.-H. Chang, Parallel co-clustering with augmented matrices algorithm with map-
reduce, Data Warehousing and Knowledge Discovery, pp.183-194, 2014.

[7] T. White, Hadoop: The Definitive Guide, O’Reilly Media, Inc., 2012.
[8] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker and I. Stoica, Spark: Cluster computing

with working sets, Usenix Conference on Hot Topics in Cloud Computing, vol.15, no.1, pp.1765-
1773, 2010.

