
ICIC Express Letters
Part B: Applications ICIC International c⃝2016 ISSN 2185-2766
Volume 7, Number 11, November 2016 pp. 2347–2352

STUDY ON RECOVERING TRACE LINKS
AMONG SOFTWARE ARTIFACTS

Jinshui Wang1,2, Chia-Jung Lee1,2 and Xingsi Xue1,2

1College of Information Science and Engineering
2Fujian Provincial Key Laboratory of Big Data Mining and Applications

Fujian University of Technology
No. 3, Xueyuan Road, University Town, Minhou, Fuzhou 350118, P. R. China

{ ymkscom; leecj2009; xxs }@gmail.com

Received April 2016; accepted July 2016

Abstract. Developers often have to trace links among software artifacts during soft-
ware maintenance and evolution tasks. This activity, which is referred to as traceability
recovery in software engineering, is human-intensive and knowledge-intensive. How-
ever, little is still known on the process of traceability recovery. Our paper presents an
exploratory study conducted with 8 subjects that require recovering traceability between
different artifacts for an open source software system in a controlled environment. Our
study yields surprising observations as follows: 1) comparing with the difficulty of the
task, the familiarity with subject system and task could be the key factor that affects the
effort of recovering traceability links; 2) recovering requirements-to-code traces is more
difficult than recovering other types of traces.
Keywords: Traceability recovery, Software maintenance, Exploratory experiment, Hu-
man study

1. Introduction. Traceability, which is defined as the ability to trace the relationships
between software artifacts, has been recognized as a significant contributor to efficient
software and system quality [1]. Traceability is shown to be useful in many software
maintenance and evolution tasks [1,2], such as system verification and validation (V&V),
change management, reuse analysis, program comprehension, regression testing and reg-
ulatory compliance. Being considered as the essential means to ensure that the source
code of a software system is consistent with its requirements and that all and only the
specified requirements have been implemented [3], traceability is a necessary component
of the approval and certification process in most safety-critical systems [4]. Furthermore,
traceability is also considered as a best practice and appointed by many major engineering
standards (e.g., ISO 15504) and organizations (e.g., CMMI Product Team 2010) [5].

In practice, traceability information is typically presented and visualized using the re-
quirements traceability matrix (RTM), which is able to document bi-directional traces
between requirement and other software artifacts. Due to the complexity of software
systems and the cross-cutting concerns of requirement distributed in different artifacts,
the process of creating and maintaining an RTM is time-consuming and error-prone [1].
To address this problem, various techniques have been presented to provide (semi-) auto-
matic assistance in traceability tasks, using information retrieval (IR) [6], static analysis
[7,8], and dynamic analysis [9]. Researchers have empirically shown that these proposals
can reduce developer’s effort in tracing links between different artifacts and improve the
quality of traceability recovery results.

In spite of the success of these techniques, traceability recovery remains a human-
intensive and knowledge-intensive activity, and it is still risky to neglect human factors in
the process [10]. However, little is still known on the process of traceability recovery. Due
to the lack of knowledge that reflects practices of traceability experts and practitioners

2347



2348 J. WANG, C.-J. LEE AND X. XUE

[11], few software companies will choose to implement traceability processes [12]. A better
understanding of how people recover trace links is essential for the researchers who wish
to improve their existing techniques, and it is also needed by those tool developers and
practitioners who provide trace recovery features and face the challenges of planning and
managing trace recovery activities in industrial practice, respectively.

Researchers have conducted case studies and experiments to identify the relations be-
tween tracing results, and the key aspects of traceability recovery process, for example,
the effort of recovering traceability links [13], the presence of automated methods or tools
that provide suggestions for a specific task [14], and different external factors (e.g., human
factors, task properties and in-process feedbacks) [10]. However, they did not identify the
key factor in affecting the effort of recovering traceability. Furthermore, their experiment
only concentrated on traceability links between requirements and code, and left out other
types of traceability links (e.g., bugs and code, requirement and bug).

In this paper, we focus on understanding how developers trace links between different
artifacts. More precisely, we try to answer the following two important research questions.

RQ 1. What is the key factor in affecting the effort of recovering traceability links?
RQ 2. Does the type of traceability links impact trace recovery effort?
To this end, we conduct an exploratory study of traceability recovery. In particular,

we recruited 8 undergraduate students from our school, and each of them is given an
unfamiliar system (JEdit) and asked to work on five traceability recovery tasks. After
that, we analyze the screen-recorded videos of each participant’s tracing process and
conduct post-experiment questionnaires and interviews with the participants.

The remainder of the paper is organized as follows. Section 2 describes the design of our
exploratory study. Section 3 presents the results of our experimental study and Section
4 concludes the paper with a summary of our findings.

2. Experiment Design. Our exploratory study of developers performing traceability
recovery is based on JEdit, which is an open source Java system. Before the experiment,
we introduce to the participants the background and relevant domain knowledge about the
subject system. To ensure all participants’ understandings of their tasks are similar, we
also introduce the tasks to be completed and demonstrate the typical usage scenarios(s)
of the involved requirements. During the experiment, we ask one assistant to help the
participants realize the tasks and configure the environment. Table 1 summarizes the
subject system.

Table 1. Subject systems, revisions, bugs and feature requests

Revision
Source code Bug Feature request

Classes Methods Closed Open&Pending Closed Open&Pending
4480 1055 7401 3700 230 294 203

During the procedure of the experiment, all 8 participants are respectively given five
traceability recovery tasks. Based on an overall consideration of complexity of the subject
system, participants’ familiarity with the system, and the representation of traceability
links, we select the following five requirements.

1) Set the foreground color when text is selected
2) Search and replace text content
3) Highlight syntax token
4) Autosave turned off for untitled documents
5) Auto indent for Java
The difficulty of these requirements is moderate which ensures they can be easily un-

derstood by the participants. Note that our recent study [15] suggests that developers
often feel difficult to formulate a suitable query (e.g., keywords) from feature/requirement



ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.7, NO.11, 2016 2349

descriptions, which is a crucial factor in traceability recovery. To observe the difference
in search behavior, these requirements were described in Chinese, and participants had
to conceive queries before starting with code search.

For each task, the participants are requested to identify as many software artifacts that
they deemed to be relevant to the given requirement as possible. To help the participants
get familiar with the assigned tasks, we offer an example before the experiment began.
In addition, all necessary software (e.g., integrated development environment, and SVN
client) are installed and configured ahead of time, so that the participants can concentrate
on their tasks.

In order to analyze the actions and processes of each participant in completing the as-
signed tasks, all the participants are required to run a full-screen recorder once they start
the tasks. Furthermore, the participants are also asked to document their traceability
recovery results according to the given template, and submitted them after the experi-
ment. Finally, all the participants are asked to take part in a post-study questionnaire
and an interview to provide more information which is difficult to learn by analyzing the
screen-recorded videos of their traceability recovery process.

3. Experiment Results. Our experiment produced 11 hours 47 minutes of full-screen
videos of 8 participants’ work on 5 traceability recovery tasks on JEdit. Based on these
videos, we analyze each participant’s tracing processes as follows. First, we identify the
moments when the participant begins, finishes or switches the tasks, so that the time spent
in each task can be calculated. Furthermore, because there are four types of traceability
links (i.e., requirement to source code, requirement to revision, requirement to bug report,
and requirement to feature request) to be recovered, we also record the time spent in
recovering each type of traceability links.

The key factor affecting effort (RQ 1 ). Let us first investigate the overall time
distributions of each task as shown in Table 2. Note that the time consumption varies
greatly for different tasks or participants. For example, the first participant (T1) spends
4731 seconds for task 1, while spends 1029 seconds for task 5. Besides, for task 1, the
first participant (T1) needs 4731 seconds to complete the job, while the sixth participant
(T6) only needs 448 seconds. Among these 8 participants, 5 participants need the most
time on Task 1.

To explore the impact of task property on time distributions, all participants are re-
quired to choose the most difficult and easiest task in a post-study questionnaire. The
results of the questionnaire show that no participant considers Task 1 as the most difficult
one. On the contrary, 3 out of 8 participants consider it as the easiest task. Based on the
screen videos of the participants’ work and the post-experiment interview, we find out
the leading cause behind the statistic. These traceability recovery tasks and the subject

Table 2. The amount of time spent in each task (seconds)

Task1 Task2 Task3 Task4 Task5
T1 4731 1168 1899 1194 1029
T2 2687 513 1074 766 925
T3 1925 670 385 338 450
T4 998 279 856 451 369
T5 1250 1171 815 473 821
T6 448 1621 2110 1179 895
T7 955 653 602 1256 1024
T8 1160 1525 416 540 789
Avg 1759.25 950 1019.63 774.63 787.75



2350 J. WANG, C.-J. LEE AND X. XUE

Table 3. The sequence of tasks performed by each participant

Task1 Task2 Task3 Task4 Task5
T1 1 2 3 4 5
T2 1 2 3 4 5
T3 1 2 3 4 5
T4 5 1 2 3 4
T5 1 2 3 4 5
T6 5 1 2 3 4
T7 1 2 3 4 5
T8 1 2 3 4 5

system (JEdit) are unfamiliar to most participants, and may be difficult to learn. There-
fore, it took participants a lot of time to become familiar with the system and tasks,
leading most participants to spend the largest portion of their time on the first task. The
sequence of tasks performed by each participant is summarized in Table 3. From Table
2 and Table 3, we could conclude that the familiarity of subject system and task rather
than the difficulty of task is the decisive factor that affects the effort of participant.

Type of traces and effort (RQ 2 ). Regarding this research question, we tried
to understand which type of trace links requires more effort to recover. Table 4 shows
that all participants devoted the most time to recovering requirements-to-code traces.
Among these eight participants, seven spend more than half their time on recovering
requirements-to-code traces, only one spends relatively less time (45.5% of his time) on it.
It is intuitive to assume that recovering requirements-to-code traces requires more effort
since source code is more complex than other artifacts. The post-study questionnaire
data shows that recovering requirements-to-code traces are considered the hardest by
seven participants, while only one participant considered recovering requirements-to-bug
is the hardest. Meanwhile, recovering requirements-to-bugs is considered the easiest by
five participants, while three participants considered recovering requirements-to-features
is the easiest.

Through the post-experiment interview with the participants, two key factors which
may have an impact on trace effort were identified. First, the complexity of artifacts
to be analyzed is of great significance. In particular, participants are required to recover
requirements-to-code traces in a harsh scenario of unfamiliar tasks without automatic tool
support. During the procedure of experiment, individual participant could only investi-
gate a small set of program elements due to the limit of energy and time, which leads to
a shortage of understanding of the system and tasks. Furthermore, in order to be consis-
tent with the industrial setting [13], no source code documents but a few comments are

Table 4. The amount of time spent in different types of traces (seconds)

requirement- requirement- requirement- requirement-
code revision bug feature

T1 8000 1245 320 456
T2 3093 1578 591 703
T3 2045 826 542 355
T4 1712 818 294 129
T5 2061 1218 574 677
T6 3522 1827 604 340
T7 2395 1311 674 110
T8 2658 721 505 546
Avg 3185.75 1193 513 414.5



ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.7, NO.11, 2016 2351

provided for the participants. Under these circumstances, most participants found it is
difficult to comprehend the source code, and they have to spend more effort on recovering
requirements-to-code traces. Second, compared with the source code, the syntax of other
types of software artifacts (e.g., bug reports, revision comments) is closer to the nature
language. Therefore, it is easier to identify textual keywords that participants perceived
to be relevant to the requirement, based on, for example, feature requests or bug reports.
In addition, the search tools often return many results by using these identified keywords.
It is more difficult for participants to read and determine whether the code was relevant
to the given tasks than other artifacts.

This observation suggests that recovering requirements-to-code traces is more difficult
than other types of traces, because understanding the purpose of program elements (e.g.,
class or method) as a whole is more difficult than understanding the textual description
in other artifacts. This also indicates that helping developers to explore and to under-
stand codes has been an important challenge in software engineering research. The lack of
automatic traceability recovery mechanisms increases the difficulty in comprehending, ex-
ploring, and capturing program elements. Understanding the difficulty behind traceability
recovery would allow it to provide more contextual-sensitive support for what developers
are currently working on.

4. Conclusion. In this paper, we report an exploratory study of traceability recovery
process in a controlled environment, involving 8 participants and 5 traceability recovery
tasks for an open source software system. Our study reveals several interesting facts
about the traceability recovery process: 1) comparing with the difficulty of the task,
the familiarity with subject system and task could be the key factor that affects the
effort of recovering traceability links; 2) recovering requirements-to-code traces is more
difficult than recovering other types of traces. Future work will investigate more precisely
the relationship and difference between traceability recovery process and feature location
process.

Acknowledgment. This work is supported by the National Natural Science Founda-
tion of China (Nos. 61402108, 61503082), Foundation for Scientific Research of Fujian
Education Committee (Nos. JA15348, JA15336, JA13211), Research and Development
Program of Fujian University of Technology (Nos. GY-Z15101, GY-Z15121). The authors
also gratefully acknowledge the helpful comments and suggestions of the reviewers, which
have improved the presentation.

REFERENCES

[1] J. H. Hayes, A. Dekhtyar, S. K. Sundaram, E. A. Holbrook, S. Vadlamudi and A. April, Requirements
tracing on target (retro): Improving software maintenance through traceability recovery, Innovations
in Systems and Software Engineering, vol.3, no.3, pp.193-202, 2007.

[2] S. Nair, D. L. V. J. Luis and S. Sen, A review of traceability research at the requirements engineering
conferenceRE@21, Proc. of the 21st IEEE International Requirements Engineering Conference, Rio
de Janeiro, Brazil, pp.222-229, 2013.

[3] N. Ali, Y. G. Guéhéneuc and G. Antoniol. Trustrace: Mining software repositories to improve the
accuracy of requirement traceability links, IEEE Trans. Software Engineering, vol.39, no.39, pp.725-
741, 2013.

[4] J. Cleland-Huang, O. C. Gotel, J. H. Hayes, P. Der and A. Zisman, Software traceability: Trends
and future directions, On Future of Software Engineering, Hyderabad, India, pp.55-69, 2014.

[5] A. Egyed, S. Biffl, M. Heindl and P. Grunbacher, Determining the cost-quality trade-off for auto-
mated software traceability, Proc. of the 20th IEEE/ACM International Conference on Automated
Software Engineering, New York, USA, pp.360-363, 2005.

[6] C. Liu, G. Lai and X. Wang, Analysis and improvement on retrieval methods for traceability links
between source code and documentation, Tien Tzu Hsueh Pao/Acta Electronica Sinica, vol.37, no.S1,
pp.22-30, 2009.



2352 J. WANG, C.-J. LEE AND X. XUE

[7] A. Qusef, G. Bavota, R. Oliveto, A. De Lucia and D. Binkley, Recovering test-to-code traceability
using slicing and textual analysis, Journal of Systems and Software, vol.88, no.2, pp.147-168, 2014.

[8] H. Kuang, P. Mader, H. Hu, A. Ghabi, L. Huang, J. Lu and A. Egyed, Can method data dependencies
support the assessment of traceability between requirements and source code? Journal of Software:
Evolution and Process, vol.27, no.11, pp.838-866, 2015.

[9] B. Dit, M. Revelle and D. Poshyvanyk, Integrating information retrieval, execution and link analysis
algorithms to improve feature location in software, Empirical Software Engineering, vol.18, no.2,
pp.277-309, 2013.

[10] J. Wang, Z. Xing, W. Zhao and X. Peng, How developers perform feature location tasks: A human-
centric and process-oriented exploratory study, Journal of Software: Evolution and Process, vol.25,
no.11, pp.1193-1224, 2013.

[11] R. Oliveto, G. Antoniol, A. Marcus and J. Hayes, Software artefact traceability: The never-ending
challenge, Proc. of the 23rd IEEE International Conference on Software Maintenance, Paris, France,
pp.485-488, 2007.

[12] G. Regan, F. Mccaffery, K. Mcdaid and D. Flood, Traceability-why do it? Software Process Im-
provement and Capability Determination, Springer, pp.161-172, 2012.

[13] A. Egyed, F. Graf and P. Grunbacher, Effort and quality of recovering requirements-to-code traces:
Two exploratory experiments, Proc of the 18th IEEE International Requirements Engineering Con-
ference, Sydney, NSW, Australia, pp.221-230, 2010.

[14] D. Cuddeback, A. Dekhtyar and J. Hayes. Automated requirements traceability: The study of human
analysts, Proc. of the 18th IEEE International Requirements Engineering Conference, Sydney, NSW,
Australia, pp.231-240, 2010.

[15] J. Wang, X. Peng, Z. Xing and W. Zhao, Improving feature location practice with multi-faceted
interactive exploration, Proc. of the 35th International Conference on Software Engineering, San
Francisco, USA, pp.762-771, 2013.


