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Abstract. Sparse representation for classification (SRC) has achieved a big success
for face recognition. It utilizes a sparsely linear combination of the training samples to
construct a test sample, and classifies the test sample based on the reconstruction error
associated with each class. Since SRC weights each training sample equally important,
which may not hold for real applications, we propose a novel sample weighted sparse
representation classification approach (SWSRC) by weighting each training sample dif-
ferently. We first employ the representation ability of each training sample to construct
a weight matrix and then solve a weighted l1 minimization problem to obtain the sparse
reconstruction coefficients. Experimental results on AR, YaleB and USPS image datasets
demonstrate its effectiveness.
Keywords: Sparse representation, Sample weighted SRC (SWSRC), Image classifica-
tion, Face recognition

1. Introduction. Due to its good recognition capabilities, sparse representation for im-
age recognition has become very popular in machine learning and pattern recognition
domains, and many works have been done in this branch [1, 2, 3, 4, 5, 6, 7]. All the
approaches first learn a construction dictionary and the corresponding sparsely linear re-
construction parameters, and utilize reconstruction errors for classification. They got a
big success in some pattern recognition problems, especially in face recognition [8, 9, 10].
Based on the lasso optimization problems, many parameters will be zero, and thus leads
to the sparse construction of a test sample. SRC [1] is robust to occlusion, noise and illu-
mination. Motivated by its good performance, a lot of algorithms of sparse representation
for face recognition have been proposed.

Considering that different training samples may contribute differently to a test sample,
Lu et al. [11] proposed a weighted sparse representation classification (WSRC) method
by adding a weighted sparsity regulation item in the optimization problem. Fan et al.
[12] proposed a weighted sparse representation algorithm by straightforwardly assigning
weights on the training samples. Gao et al. [13] proposed a kernel sparse representation
for image classification and face recognition, and Yang et al. [14] proposed a robust sparse
coding (RSC) model which seeks for the maximum likelihood estimation solution and is
more robust to outliers. In order to improve face recognition performance, Yang et al. [15]
proposed a method which combines SRC with Metaface learning. Xu et al. [10] proposed
a method which divides the sparse representation into two parts (TPTSR). The approach
first finds some nearest neighbors for a test sample and then uses the nearest neighbors
to represent the test sample.

In pattern recognition and machine learning fields, samples usually have different impor-
tance in representation, recognition and classification. Many methods have been proposed
to consider sample or feature weights. In order to reduce the image dimension, Zhu et al.
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[16] proposed a feature selection algorithm by learning a weight matrix, which is computed
by self-representation. A weighted version of principal component analysis was proposed
in [17], which sets different weights to different images.

It can be accepted that, different training samples contribute differently to the repre-
sentation of a test sample. So by considering each training sample differently, we pro-
pose a new sample weighted sparse representation classification scheme, namely SWSRC.
SWSRC introduces a sample weight matrix into SRC and aims to improve the performance
of SRC. When all training samples are used to construct a test sample, a coefficient vec-
tor can be obtained by solving a predefined optimization problem. Each element of the
coefficient vector reflects the importance of each training sample. We use the coefficient
vector to construct a weight matrix and introduce it into the regularization item of SRC.
If a training sample has a big weight, the corresponding representation coefficient of SRC
should be nonzero. Otherwise, if a training sample has a small weight value, the cor-
responding coefficient should be zero. Compared with SRC, SWSRC can enhance the
classification effectiveness of SRC in principle, since SWSRC exploits weight information
in representing the test samples whereas SRC does not exploit it. Compared with other
existing WSRC methods, SWSRC utilizes construction coefficient to weight samples in-
stead of distance. Obviously, the construction coefficients have more direct ability than
distance when using the weight to represent samples. Finally, the coefficients computed by
SWSRC are more effective and take more local structures of data into account. Extensive
experiments are conducted on human face images and digit images. The experimental
results show that the proposed algorithm is superior to several relative algorithms.

The rest of the paper is organized as follows. In Section 2, we review the related work of
SRC and WSRC. In Section 3, we describe the proposed approach. Experimental results
and comparisons on three real-world datasets are demonstrated in Section 4. Finally, the
conclusion is given in Section 5.

2. Related Work.

2.1. The SRC algorithm. Let X = [x1,x2, . . . ,xn] ∈ Rm×n be a training matrix, where
m is the number of features and n is the number of training samples. Let Di ∈ Rm×ni be
the dataset of the ith class, where ni is the number of samples belonging to class i and
each column is a sample. So we get D = [D1,D2, . . . ,DK ] ∈ Rm×n to be the dictionary,
where K is the number of total classes and n = n1 + n2 + · · · + nK .

Then for a test image y = [y1; y2; . . . ; ym], we use D to represent it. It is y = Dα,
where α = [c1(α̂), c2(α̂), . . . , cK(α̂)] and ci(α̂) is the coefficients in α associated with class
i. If y is from class i, Dici(α̂) will construct y well, so we hope the entries of α are zero
except ci(α̂) that is associated with class i.

The SRC algorithm [1] can be summarized in Table 1.

Table 1. Description of SRC

Input: training samples X, a test sample y and λ
Output: the class label of y

1. Make a big dictionary D by the entire training samples X.
2. For a test image y, solve the following l1 minimization problem:

α̂ = arg min
α

(||y − Dα||22 + λ||α||1)
3. Compute the error for i = 1, . . . , K:

ei(y) = ||y − Dci(α̂)||2
4. Output the class label of y as

class(y) = arg min
i

ei(y)
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2.2. Weighted sparse representation. Obviously, the classical SRC considers all train-
ing samples as equally important. So a test sample may be constructed by some samples
which are far from the test sample. And this may lead to non-robust results. That means
the classical SRC ignores the local structures of data [18]. Sometimes locality is more
important than sparsity, so a weighted SRC (WSRC) [11] was presented. WSRC is given
by the following model:

α̂ = arg min
α

(
||y − Dα||22 + λ||wα||1

)
(1)

where w = diag[w1, w2, . . . , wn] is a diagonal matrix with wi = ||y − xi||2.
wi = ||y−xi||2 is the distance between y and xi, and reflects the similarity between the

test sample y and the training sample xi. The larger wi is, the less xi contributes to y.
So WSRC imposes more discriminative information into SRC to improve the performance
of classification.

3. Sample Weighted Sparse Representation. Motivated by the weakness of SRC
and the good improvement of WSRC, we propose a new method of weighted SRC by
introducing a new weighted strategy. Our approach is divided into two steps: we first
compute each sample weight, and then solve a weighted l1 minimization problem.

3.1. Sample weighted representation. In this part, we introduce how to compute the
weight matrix of all training samples in a different way. Of course, the matrix to be
learned should reflect the importance of each sample.

We think that each test sample can be well constructed by all the training samples and
the contribution of each sample is different. So we want to get the contributions of all
training samples when representing a test sample and use the contributions to construct
a weight matrix. We use all the training samples as a dictionary and each test sample is
represented by it.

For a test sample y, we represent it as a linear combination of all training samples [10]
(TPTSR):

y = Dm + r (2)

where m = [m1,m2, . . . ,mn] is the representation coefficient matrix and r is the residual
matrix.

When using all training samples to represent y, if D is a nonsingular square matrix,
we define

m = D−1y (3)

Otherwise, we define

m =
(
DTD + µI

)−1
DTy (4)

where µ is a small positive number. Each training sample has its own contribution to
representing a test sample, and the contribution of the ith training sample to the test
sample is the reconstruction coefficient mi. Obviously, the important samples should well
represent the test sample; in other words, the residual matrix r = y − Dm should be
small. We define ri = ||y − mixi||2 to reflect the contribution of the ith training sample
xi to the test sample. The smaller the ri is, the larger the contribution is. We construct
a weight matrix as follows:

1

W
= diag[r1, r2, . . . , rn] ∈ R1×n, ri = ∥y − mixi∥2 (5)
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3.2. Sample weighted sparse representation for classification. In order to fully
utilize the sample locality property, we learn the sparse parameters as

α̂ = arg min
α

(
∥y − Dα∥2

2 + λ

∥∥∥∥ 1

W
α

∥∥∥∥
1

)
(6)

where W is a diagonal matrix with W = diag[W1,W2, . . . , Wn] and can be learned from
Formula (5).

Wi reflects the importance of the ith training sample. We use the form of reciprocal
merely to make the model look intuitive. The smaller Wi is, the larger 1

Wi
will be, and

the corresponding coefficient αi of the training sample will approach zero. In this way,
when learning the sparse coefficient α, the relationship among data is taken into account,
and thus, SWSRC can learn more accurate sparse coefficients than SRC.

From another point of view, our method is the extension of WSRC algorithm. In
fact, if m is set to 1n×1, then our method is reduced to WSRC. From the definition of
ri = ∥y−mixi∥2 in SWSRC and wi = ∥y−xi∥2 in WSRC, we can say that, SWSRC can
be regarded as a weighted WSRC which puts the first step reconstruction coefficient mi

as a weight, and thus, more local information is introduced into SWSRC than WSRC.
We summarize the overall optimization of the above model in Table 2, and we adopt

the implementation in SPAMS package1.

Table 2. Description of SWSRC

Input: training samples X, a test sample y, µ and λ
Output: the class label of y

1. Make a big dictionary D by the entire training samples X.
2. Learn a weight matrix W of all training samples as Formula (5).
3. For a test image y, solve the follow weighted l1 minimization problem:

α̂ = arg min
α

(
||y − Dα||22 + λ|| 1

W
α||1

)
4. Compute the error for i = 1, . . . , K:

ei(y) = ||y − Dci(α̂)||2
5. Output the class label of y as

class(y) = arg min
i

ei(y)

4. Experiments. In this section, we have conducted three experiments on the popular
datasets to demonstrate the effectiveness of SWSRC. We use principal component analysis
(PCA) [19] to implement image dimensionality reduction and set 0.1 and 0.01 to µ and λ
respectively in SWSRC. For the parameters used in SRC, WSRC and TPTSR, we follow
the author’s original settings in [1, 10, 11] respectively.

4.1. The AR face image database. The AR database [20] consists of over 4000 frontal
face images of 126 individuals with different facial expressions, occlusions and lighting
conditions. Figure 1 shows some samples of this dataset. We choose a subset of the
dataset consisting of 50 female and 50 male subjects. For each subject, we choose 7
images that only illumination and expressions change from Session 1 for training and
Session 2 for testing separately.

The recognition rates are reported in Table 3, and the values in bold face are the highest
recognition rates. It shows that, SWSRC outperforms the other methods under all five
different dimensions, and its recognition rate increases as the dimension increases. The
time costs of three methods related to SRC are shown in Table 4, and the values in bold
face represent the lowest time costs. The results also demonstrate that SWSRC costs far

1http://spams-devel.gforge.inria.fr.
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Figure 1. Sample face images from AR database

Table 3. Recognition rate on AR database under different feature dimensionality

50 100 200 400 2580

KNN 0.6529 0.6743 0.6829 0.6886 0.6871
SRC 0.7457 0.7886 0.8329 0.8357 0.8286

WSRC 0.7743 0.8143 0.8186 0.8171 0.7586
TPTSR 0.7286 0.7914 0.8200 0.8343 0.8386
SWSRC 0.7829 0.8257 0.8529 0.8557 0.8629

Table 4. Time cost (second) on AR database under different feature dimensionality

50 100 200 400 2580

SRC 619.7 633.1 738.0 1404.0 1980.3
WSRC 8.8 15.4 30.2 103.0 353.5
SWSRC 6.3 8.8 11.8 18.0 41.0

Figure 2. Sample face images from YaleB database

less time than SRC. SRC uses the truncated Newton interior-point method [21] to solve
the l1-regularized least squares problem. In SWSRC, we use the LARS algorithm [22] to
solve the optimization problem. The difference between the two algorithms may be the
reason why the time costs are different. SWSRC costs less time than WSRC. Because
SWSRC and WSRC use the same optimization algorithm, their time cost difference may
be caused by the weight matrix learning process.

4.2. The YaleB face image database. The YaleB database [23] consists of 2414 frontal
face images of 38 individuals under various lighting conditions. Figure 2 gives some
samples of this dataset. For each individual, we randomly select half of them for training
and the left for testing.

The recognition rates are reported in Table 5, and the values in bold face are the best
ones. From Table 5, we can see that our method performs the best under the last three
high dimensions and performs almost equally well compared with SRC under the other
dimensions. The time costs of the three methods related to SRC are shown in Table 6,
and the values in bold face represent the lowest time costs. SWSRC outperforms SRC
and WSRC based on the time cost.

4.3. The USPS handwritten digit database. In order to show the effectiveness of
SWSRC, we also conduct experiments on USPS database [24], which consists of two parts.
Part 1 consists of 7291 images, and part 2 consists of 2007 images. Some sample images
are shown in Figure 3. We randomly select 60% images from part 2 for training and the
rest 40% for testing.
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Table 5. Recognition rate on YaleB database under different feature dimensionality

50 100 200 400 1024

KNN 0.5643 0.6373 0.6780 0.6971 0.7004
SRC 0.8963 0.9245 0.9427 0.9451 0.9485

WSRC 0.8996 0.9278 0.9452 0.9436 0.9394
TPTSR 0.9029 0.9303 0.9378 0.9411 0.9394
SWSRC 0.8970 0.9247 0.9459 0.9462 0.9494

Table 6. Time cost (second) on YaleB database under different feature dimensionality

50 100 200 400 1024

SRC 1315.5 1530.2 2834.6 4411.5 8780.9
WSRC 17.7 35.3 76.2 348.8 1888.8
SWSRC 17.4 31.0 67.7 247.7 1836.3

Figure 3. Sample digit images from USPS database

Table 7. Recognition rate on USPS database under different feature dimensionality

30 50 100 200 1024

KNN 0.9328 0.9402 0.9377 0.9377 0.9377
SRC 0.9427 0.9390 0.9440 0.9402 0.9402

WSRC 0.9427 0.9422 0.9402 0.9253 0.9290
TPTSR 0.9141 0.9303 0.9290 0.9365 0.9303
SWSRC 0.9477 0.9440 0.9465 0.9477 0.9477

Table 8. Time cost (second) on USPS database under different feature dimensionality

30 50 100 200 1024

SRC 1228.0 1406.2 1687.0 3303.7 3908.0
WSRC 7.3 12.9 30.8 62.2 66.0
SWSRC 4.2 5.0 7.2 8.8 10.1

The recognition rates are reported in Table 7, and the values in bold face are the highest
recognition rates. The time costs of the three methods related to SRC are shown in Table
8, and the values in bold face represent the lowest time costs. The results demonstrate
that, our method performs better than the other methods based on the recognition rate
and the time cost. We also can see that the recognition rate is not sensitive to data
dimension.

The results on AR, YaleB and USPS show that, SWSRC performs well on face recog-
nition and other pattern recognition problems such as handwritten recognition. SWSRC
considers some local information when constructing samples, so it outperforms SRC on
data that local structure is essential for discrimination. It is based on the reconstruction
errors to evaluate the importance of each individual training sample, and obtains the
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weights more effectively than WSRC which uses distance to evaluate the importance of
training samples.

5. Conclusion. In this paper, we propose a novel sample weighted approach SWSRC
for learning the sparse representations of test samples based on the dictionary learning
approaches. SWSRC learns the weights of training samples for a test sample based on a
linear reconstruction model. We introduce the weights into a weighted lasso optimization
problem to learn the sparse reconstruction coefficients. It is a modification of WSRC, and
experiments on two face image datasets and a handwritten digit image dataset demon-
strate its effectiveness. However, the proposed approach still has room for improvement.
For instance, other proposed weighting methods with a reduced time complexity could be
introduced to improve the computational efficiency. Doing so, in a principled manner, it
remains an important direction for future work.
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